
0-AIMS 353 ANALYTICS INC WILLOW GROVE PA PIG S/8
THE HUMAN OPERATOR SIMULATOR. VOLUME 1V. HOS STUDOY GUIOE.U

SEP2 78 M 1 STRIEG, F A GLENN, R J WHERRY N62269-78-M-668S

JNCLASSIFIEO TR-1320VOL9 NL

.4 mmhhh

Teshnic Report 1320

THE HUMAN OPERATOR SIMULATOR
VOLUME IX

fHOS STUDY GUIDE

Contt No. N62268.78.M46684

Saptamber, 1978

Prepared by,
MeMn I. Strieb

Floyd A. Glenn, PhD
Robert J. Wherry, Jr., PhD

II

eLN N

I Approved for pui-fc iclecxs:
2500 MARYLANO ROAD. WILLOW GROVE, PA. 19M igb

81 1 29 0.7

THE HUMAN pPERATORMULAT0RE
'~ /1' OyLUMEIXL

H STDY PUtDE.

Contract No N62269-78-MOW ~

10. Melvin l./Streb
Floyd A. iGlenn

-Robert . ryJ

AT

AN&Y-ncs1
25W~ ~ ~ ~ ~ mAPLAN ROO ILWGOEP

TABLE OF CONTENTS

1. INTRODUCTION
1.1 HOS Is A Solution To A System Evaluation Problem I
1.2 What Information Can Be Obtained By Simulating 3

An Operator?
1.3 Characteristics Of The HOS Operator 6
1.4 What Information Does HOS Require? 9
1.5 HOS Is A Composite Of Operator Performance Models 11
1.6 HOS Primitive Functions 13
1.7 The Human Operator Procedures (HOPROC) Language 15
1.8 A Sample HOS Simulation 17

1.8.1 The SS-3 Operator Station 19
1.8.2 Functions of the SS-3 Controls 19
1.8.3 Outline of Operator Procedures 22
1.8.4 The HOS Radar Plotting Simulation 24

2. THE HOS OPERATOR MODELS
2.1 Information Absorption 37

2.1.1 Absorption Modalities 37
2.1.2 Absorption Hab Strengths 38
2.1.3 Absorption Estimates and Errors 40
2.1.4 Accessing the Information Absorption 43

Mi cro-Model

2.2 Information Recall ... 43
2.2.1 Long-Term and Short-Term Memory 43
2.2.2 Errors.During Recall 49
2.2.3 Extrapolation of Values 49
2.2.4 Accessing the Information Recall Micro-Model 49
2.4.5 Scope of the Information Absorption and 51

Recall. Models
2.3 Mental Computation 51

2.4 Making a Decision .. 55
2.5 Anatomy Movement ... 61

* 2.6 Performing a Control Manipulation 71
2.7 Relaxation ... 73
2.8 Operator Variability 73

3. THE HOPROC LANGUAGE

3.1 Introduction 77
3.2 Title Declarations ... 83

3.2.1 Displays and Controls 83
3.2.2 The DISPLAY and CONTROL SECTIONs 85

/

4 1

A

3.2.3 Overriding the Section Declarations 85
3.2.4 Types of Displays and Controls................... 87
3.2.5 Defining a Discrete Device 87
3.2.6 Omission of Setting Titles 89
3.2.7 Momentary Contact Switches 89
3.2.8 Defining Continuous and Positional Devices 91
3.2.9 Symbols 93
3.2.10 The SYMBOL SECTION 93
3.2.11 Ordering of Symbol Characteristic Titles 93
3.2.12 Overriding Section Declarations.................. 96
3.2.13 Device Groups.................................. 96
3.2.14 The SETTING SECTION............................. 99
3.2.15 Ordinals 101

3.3 The Procedure Definitions 101
3.4 The Operator Procedures 103

3.4.1 The DEFINE Statement............................ 103
3.4.2 The PERFORM Statement........................... 105
3.4.3 The START Statement............................. 107
3.4.4 The COMPLETE Statement.......................... 107
3.4.5 The END Statement 109
3.4.6 The ENABLE Procedures........................... 109
3.4.7 The ALTER Statement for Discrete Controls 113
3.4.8 The IF ANY Statement............................ 113
3.4.9 The DESIGNATE Statement......................... 115
3.4.10 Scope of an IF ANY.............................. 117
3.4.11 Punctuation.................................... 117
3.4.12 The ALTER Statement for Displays and Symbols 117
3.4.13 The ALTER Statement for Momentary Contact 121

Switches
3.4.14 Implicit Invocation of ENABLE Procedures 121
3.4.15 MONITOR and DISABLE Procedures................... 125
3.4.16 The IF ANOTHER Statement 125
3.4.17 The GO TO Statement................................... 127
3.4.18 The READ Statement 127
3.4.19 The IF... OK Test 129
3.4.20 Limits on Desired Values 131
3.4.21 Use of the Pronoun IT........................... 131
3.4.22 Invoking a Function Calculation -- The 133

COMPUTE Statement
3.4.23 Parameters, Positionals, Scale Factors, and 134

Wait Conditions
3.4.24 Explicit Use of Parameters 135
3.4.25 Positional Quantities in IF and ALTER 136

Statements .6
3.4.26 Use of Scale Factors in Procedural Statements 137
3.4.27 The WAIT Clause 139

3.5 Operator Functions ... 139

3.5.1 Definition of a Function 141
3.5.2 Referencing Displays, Controls, and Symbols 141

in a Function
3.5.3 Referencing a HOPROC Variable's Dictionary 144

Entry Number
3.5.4 The TRACK-BALL-POSITION Function 144
3.5.5 Referencing Other Operator Functions 146
3.5.6 Introductory Statements in Operator 147

Functions Section
3.5.7 Other Constraints on the Operator Functions 147

3.6 Hardware Procedures 148

3.6.1 SIMULATE Procedures 151
3.6.2 Regular Hardware Procedures 152
3.6.3 The Radar Plotting Hardware Procedures 152
3.6.4 SIMULATE Procedures for Discrete Controls 152
3.6.5 Hardware Functions 153
3.6.6 Altering the STATE of a Display, Control. 156

or Symbol
3.6.7 SIMULATE Procedures for Continuous Controls 156
3.6.8 The RATE and TIME Parameters 159
3.6.9 SIMULATE Procedures for Momentary Controls 161
3.6.10 Multiple Titles in a Procedure Definition 161
3.6.11 Arguments 163
3.6.12 Arguments and PERFORM (STATE) Statements 163
3.6.13 Arguments in GO TO Statements 165
3.6.14 Arguments in ALTER Statements 165
3.6.15 The ARGUMENT SECTION 167

3.7 The HOPROC Data Deck 167

4. HOW TO RUN HOS
4.1 The Deck Structure for a HOS Simulation 175
4.2 Step HOPROC .. 179
4.3 Step HAL ... 180

4.3.1 The Output from HAL 180
4.3.2 Step HOPHOD .. 182
4.3.3 The HOPROC Variable Dictionary 183
4.3.4 HAL Estimates of HOS and HODAC Core 183

Requ i reents
4.3.5 The HOS Crewstatton Data Deck Formats 187

4.3.5.1 The SYSTEM Card 187
4.3.5.2 The READ INPUTS Card 197
4.3.5.3 The CHECKPOINT Card 197

4I I I III II I I

4.3.5.4 The METRIC/ENGLISH Card 197
4?3.5.5 The Display, Control, and 198

Symbol Sections
4.3.5.6 The Operator Functions Section 199
4.3.5.7 The Model Specifications Section 199
4.3.5.8 Human Operator Specifications 200
4.3.5.9 Run Parameters 200
4.3.5.10 The PRINT/SUPPRESS MESSAGES Cards 200
4.3.5.11 The ACTIVE/INACTIVE MILESTONES Cards 200
4.3.5.12 The TIMED MILESTONES Card 200
4.3.5.13 The TIMED SNAPSHOTS Card 200
4.3.5.14 The TIMED ENDPOINT Card 200
4.3.5.15 The PLOT Cards 201

4.4 Step HALHOS .. 201
4.5 Step HOSMOD .. 202
4.6 Step HOS ... 203

4.6.1 The Output from HOS 203
4.6.2 Starting from a Checkpoint 2094.6.3 Bypassing Crewstation Input Processing 2094.6.4 HOS Run-Time Inputs 212

4.7 Steps HALHOD and HODAC 212

4.7.1 The Timeline Analysis 212
4.7.2 The Channel Loading Report 214
4.7.3 The Device By Body Parts Analysis 214
4.7.4 The Device Analysis By Usage 217
4.7.5 The Device By Procedure Analysis 219
4.7.6 The Procedures Analysis 219
4.7.7 Label Analysis 219
4.7.8 The Link Analysis 223
4.7.9 Inputs to HODAC 226

4.8 Utilities .. 227

APPENDICES
A. The HOS Operator Models 229
B. A Brief Historical Perspective of HOS 287

REFERENCES Aooesslon For
NTIS GRA&I

DTIC TAB

_Di7t r ibu i

Av iI it

4v

LIST OF FIGURES

1. SS-3 Operator Station................................... I8
2. Radar Matrix Function 20
3. Operator Procedures for the Radar Plotting Simuilation 23
4. HOWA Timeline Analysis..................................... 25
S. Channel Loading Report...................................... 26
6. HODAC Device By Body Part Analysis........................... 28
7. H00AC Device By Usage Analysis 29
8. Devices By Procedure 30
1' NOWA Procedural Analysis................................... 31

10. HODAC Label Analysis.................................... 32
11. Link Analysis 33

12. Link Analysis ... 34
13. Nab Strength as a Function of Number of Micro-Absorptions 39

for Two Discrete (Upper Curves) and Two Continuous (lower
curves) Devices with Different Rfcro-Absorption Time Charges

14. Nab Strength as a Function of Absorption Time for Same 39
Devices as in Figure 13

IS. Experimental Data on Short-Term Memory Compared with NOS 44
Hab Strength Recall Probabilities

16. Short-Term Recall Regions................................... 46
17. Recall Increments.. 46
18. Decay Values (H a .8) 50
19. Device Parameters.. 52
20. Increase in Criticality with Time 60
21. Increase in Criticality for Monitor Procedures 60
22. Anatomy Movement Logic 66
23. Hand Movement Times as a Function of Distance................. 68
24. Relaxation Logic .. 72
25. The Sections in a KOPROC Data Deck........................... 80
26. Index .. 82
27. Display and Control Sections for the Radar Plotting 86

Simulation
28. Example of Multi-Position Discrete Control.................... 90
29. Symibol Section for the Radar Plotting Simulation 94

A vi

30. Setting Section for the Padar Plotting Simulation 100

31. Operator Procedures for the Radar Plotting Simulation 102

32. Disregarded Words ... 106

33. The RADAR-PLOT Procedure .. 110

34. The Procedure to ADJUST THE HOOK-POSITION 120

35. The ENABLE Procedure for HOOK-VERIFY and ENTER-RADAR-CONTACT 124
36. The TRACK-BALL-POSITION Operator Function 140

37. Hardware Procedures for the Radar Plotting Simulation 150

38. Hardware Functions for Radar Plotting Simulation 154
39. Procedure to Simulate the TRACK-BALL 157
40. The NEW-BALL-POSITION Hardware Function 158

41. The SIMULATE Procedure 160

42. The HOOKED-POSITION Hardware Function 162

43. The ARGUMENT SECTION for the Radar Plotting Simulation 166

44. Title Declarations for the Radar Plotting Simulation 168
45. Operator Functions for the Radar Plotting Simulation 169

46. Hardware Functions for the Radar Plotting Simulation 170
47. Hardware Procedures for the Radar Plotting Simulation 172

48. Operator Procedures for the Radar Plotting Simulation 173
49. Deck Structure for a HOS Simulation 174

50. Flow of Steps in a HOS Simulation 178

51. Dictionary Arrays for the Radar Plotting Simulation 184

52. HOS and HODAC Core Estimates for the Radar Plotting 186
Simulation

53. HOS Data Deck General Specifications 188

54. HOS Data Deck Display Section 189

55. HOS Data Deck Control Section 190

56. HOS Data Deck Symbol Section 191

57. HOS Data Deck Functions Section 192

58. HOS Data Deck Model Specifications 193

59. HOS Data Deck Operator Specifications 194

60. HOS Data Deck Optional Data 195
61. The Design Eye Reference Coordinate System , 196

62. Arrays Input to HOS from HAL 204

i;J vii

7Wp

63. Crewstation Input Data ... 205
64. HOS Simulation Results ... 208
65. MILESTONE/ENDPOINT Output .. 210
66. HODAC Timeline Analysis .. 213

67. Channel Loading Report ... 215
68. HODAC Device By Body Part Analysis 216
69. HODAC Device By Usage Analysis 218

70. Devices By Procedure ... 220.

71. HOOAC Procedures Analysis .. 221

72. HODAC Label Analysis ... 222
S73. Link Analysis .. 224
74. Link Analysis .. 225

LIST OF TABLES

1. Steps in a HOS Simulation 176

I

1. INTRODUCTION

1.1 HOS IS A SOLUTION TO A SYSTEM EVALUATION PROBLEM
• .In recent years, as %systemsO (whether spacecraft, jet fighters,

or office equipment) have become more complex, there has been a growing

concern about the extent to which these systems are adapted to the capa-

bilities of the individuals who are called on to operate them. I One of the

primary emphases in the field of human factors engineering has been on

developing methodologies to evaluate systems to ensure that they are as

well adapted as possible to human capabilities and limitations. A major

thrust in these efforts has been to develop methods that would enable the

operability of a system to be evaluated before the system is ever built.

Typically, this has been done by building prototypes or simulators which are

"flown" with an operator "in-the-loop." The operator's performance is then

measured and judged against a set of performance criteria. The measures,

along with the operator's comments are used intuitively to "select" changes

that are intended to improve system performance. Thus,\"he methodology

currently used to evaluate systems -- building prototypes or testing designs

in simulators -- relies on the construction of real hardware that can be

tested with reaL operators. This requirement inevitably means that there

is a substantial time lag between the system's initial design and the time

when the prototype can be built, tested, evaluated, and any proposed changes
"recycled" through the system design process. In addition, the use of dynamic

simulators that use real operators inevitably requires a substantial outlay

of money for the development of attendant hardware and software, for the

-training and retraining of operators, and for the performance, analysis, and

evaluation of controlled experiments that utilize the simulators.- Consequently,

4 while dynamic simulators can be highly useful in training operators, it is

doubtful that the data collected from them has a significant impact on system

design.

.4 .

HOS WAS DEVELOPED TO ENABLE SYSTEMS TO BE EVALUATED

* EARLY IN DESIGN PROCESS

* WITH MAN-IN-THE-LOOP

* WITHOUT HAVING TO BUILD HARDWARE OR
SOFTWARE

0 IN A WAY THAT WOULD ENSURE CONSISTENT,
COMPARABLE, AND REPRODUCIBLE RESULTS

'4

N

A

i2

-i

.The Human Operator Simulator (HOS) was developed to alleviate

these problems in two ways. First, by enabling potential problem areas to

be identified earlier in the system design process, HOS enables corrections

to be made at lower cost and with less disruption of development schedules.

Second, for areas of marginal operator performance, HOS can focus dynamic

simulations on the likely sources of difficulty, reducing the time and cost

required to validate system operability. l

As soon as the definition of the functional requirement4 and the

allocation of functions are completed, a HOS simulation can be developed

that will describe both the hardware and the procedures that the operator

is to use in order to control a proposed piece of equipment. These descrip-

tions are then combined with a "problem description" that defines the opera-

tor's environment and HOS then simulates the system as if it were a real

operator using a real piece of equipment with a real job to do and a real

problem to solve.

Unlike other "operator simulators" that simply draw times for task

executions from sample distributions, HOS is a detailed model ofan operator.

The HOS operator has eyes, hands, and feet that move, absorb information

from displays, and manipulate controZa in accordance with the analyst's

instructions. HOS has a mind that can perform mental calculations that

rememiers and forgeta information. The HOS operator will perform the actions

that are necessary in order to accomplish a task, but will omit actions that

may be unnecessary because of the situation in which the operator finds

himself.

1.2 WHAT INFORMATION CAN BE OBTAINED BY SIMULATING AN OPERATOR?

First, HOS enables an analyst to perform operator-in-the loop

"experiments" that produce consistent, comparable, and reproducible results.

This is important because one of the major problems that plagues human per-

formance experimentation is the difficulty of providing proper controls on

/

• 3

Ia

ADVANTAGES OF SIMULATION

-- OPERATOR CHARACTERISTICS AND
TASKS CAN BE CONTROLLED

-- ENVIRONMENTAL CONDITIONS AND
PROBLEM SITUATIONS CAN BE
CONTROLLED

-- PROCESSES CAN BE OBSERVED,
MEASURED, AND RECORDED WITHOUT
INTERFERRING WITH PERFORMANCE

N

/

all the potentially relevant experimental factors. Variability in the ways
in which operators may choose to carry out tasks in a particular situation

often makes it difficult to compare the results obtained on different

experimental trials. Clearly, there is much information to be learned by

observing the full range of performance. However, in order to be able to
ensure a fair evaluation of a proposed system, one would prefer to have

consistent average performance. HOS gives the analyst the ability to
experiment with an operator whose performance is guaranteed to be consistent
and typical.

At the same time, HOS permits experimentation to be performed

with operators who deviate from the average in a variety of ways. The HOS

operator is, theoretically, a trained operator of aerage capabiZitioa who
will carry out his instructions exactly as he is told to do, exhibiting

some variability in performance speed, but, in the long run, taking the
amount of time for each instruction that an average operator would have
taken. However, by suitably changing some of the parameters, equations,
or instructions in the simulation, an analyst can change the HOS operator
into a highly idiosyncratic individual.

The second advantage that is gained by having the ability to

simulate a human operator is that one can readily simulate different environ-

mental conditions to examine how the operator responds to changing situations.
For example, one HOS simulation (Ref. 1) examined the performance of the
Sensor Station 3 operator on board the P-3C ASW Patrol Aircraft during a
simulated anchorage mission in the Mediterranean. Because it was a simula-
tion, all the features of the problem environment could be controlled --

the numbers and types of targets, their locations and characteristics,
emitter duty cycles, tactics, etc. The effects on the operator's performance
when more targets were added to the search area could be readily examined
and the conditions under which the operator became overloaded could be

determined. In another simulation (Ref. 2), the HOS operator performed
a tracking task and an interfering secondary task simultaneously. The

5

effects of varying the characteristics of the signal that the operator
was tracking and the frequency and duration of the interrupts caused by

the secondary task could be studied under more precisely controlled con-
ditions than would be achievable in the laboratory.

A third important advantage of simulation over live experimenta-

tion lies in the fact that a simulated process can be observed, measured,

and recorded with perfect fidelity without any danger of having the observa-
tion process disturb the performance being observed. In live experiments,
the performance of human subjects is always affected by the human's aware-

-ness that he is being observed. In some cases, the observation and measure-
ment apparatus may actually restrict the subject's sensory and motor capa-
bilities. In all cases, the experimental subject who knows that he is
participating in an experiment will behave more cautiously and deliberately

than a person who does not believe that he is being studied. A simulated
human operator, on the other hand, will never modify hi's performance
because he suspects that somone is watching.

1.3 CHARACTERISTICS OF THE HOS OPERATOR
The HOS operator is a trained operator -- i.e., an operator who

is familiar with the equipment (i.e., knows the locations of all the displays
and controls and their characteristics), and how to operate it (i.e., knows
the procedures and mental calculations that must be performed). Since the
operator is assumed to be trained, the operator will carry out the procedures
and use the equipment unerringly. The operator will never perform an instruc-
tion out of sequence or other than instructed.

i This does not mean, however, that the operator cannot make a
mistake. There are at least two sources of error in the HOS operator's
performance -- his short-term memory and his perceptual processes.* When

J'________________________

*There is actually a third source -- the operator could have been
trained incorrectly, causing him to do things in the wrong sequence.

4 6

THE HOS OPERATOR

* A TRAINED OPERATOR

-- KNOWS LOCATIONS OF DISPLAYS
AND CONTROLS

-- KNOWS PROCEDURES
-- KNOWS MENTAL CALCULATION

PROCESSES
-- WILL NOT PERFORM INSTRUC-

TIONS OUT OF SEQUENCE OR
OTHER THAN INSTRUCTED

4 ERRORS ARE THE RESULT OF OPERATOR/
EQUIPMENT LIMITATIONS

-- IFALLIBLE" SHORT-TERM MEMORY
-- PERCEPTUAL/MOTOR PROCESSES CAN

CAUSE ERRORS IF DISPLAYS ARE HARD
TO READ OR CONTROLS ARE HARD TO
MANIPULATE

!7

Tw

HOS REQUIRES DATA ON

* DISPLAY AND CONTROL LOCATIONS

* DISPLAY AND CONTROL CHARACTERISTICS

* HOW EACH DISPLAY AND CONTROL IS USED

0 OPERATOR'S MISSION

* OPERATOR CHARACTERISTICS

* SPECIFIC PROBLEM ENVIRONMENT

* ENVIRONMENTAL/SYSTEM DYNAMICS

48

T

the operator is told (or decides) to read a display, for example, he may

read it incorrectly, either because of some characteristic of the display

or because he did not spend a sufficient amount of time reading the display.

When attempting to remember a value, the operator might remember the value
incorrectly. These errors can cascade down through the restof the simula-

tion. But, as modeled by HOS, they represent realistic possibilities that
might occur if a real operator were performing the same job with the same

equipment. We will be saying more about the sources of operator error

when we discuss the individual performance models in HOS.

1.4 WHAT INFORMATION DOES HOS REQUIRE?

Suppose that we wish to simulate a pilot in a proposed aircraft

cockpit in order to evaluate the cockpit design. HOS would need a detailed
description of:

* The location of each display and control in the proposed
cockpit.

0 The characteristics of each display and control.

* How the pilot uses each display and control to fly the air-
craft -- e.g., how the displays and controls are used when
taxiing, taking off, climbing, etc.

* Specific environmental conditions at the beginning of the
problem -- e.g., the plane's altitude, airspeed, windspeed,
etc.

0 The pilot's task (mission) -- e.g., land the plane.

* The aircraft's flight characteristics.

HOS can then simulate both the performance of the operator and

the aircraft as the operator carries out his job. Some of his information
can be omitted or treated as a constant value; how this works will be

4 explained later.

4 9

A HOS SIMULATION REQUIRES DESCRIPTIONS OF

6 HOW THE SYSTEM [S CONFIGURED

* HOW THE SYSTEM FUNCTIONS

O HOW THE OPERATOR USES IT

-- OPERATOR ACTIONS
-- OPERATOR DECISIONS

* I

'4

I 1

t-- -

Clearly, there is a lot of information that must be supplied to

HOS. Preparing this information is not, admittedly, an easy Job. When

creating a HOS simulation, one generally has to search through many references

accumulating scattered information about how each system component functions

until a coherent pattern emerges as to how the system, as a whole, is con-

figured, how it functions, and how the operator uses it. It is this last

point -- how the operator uses the system -- that tends to be the stickiest

point to tease out from available references. Typically, most systems

operations manuals will describe what the operator must do in order to

perform a function, but do not describe what must be done in order to aolve

a probtem. For example, Naval operations manuals discuss in detail what
an ASW acoustic sensor station operator must do in order to enter a fix that
he obtains from his sonobuoys, but they do not describe the decisions that

the operator must make, almost intuitively, in order to obtain the fix in

the first place. These decisions include such things as deciding how many
sensors to place, where and when to place them, what channels to listen to

and when to listen, etc. These types of decisions are rarely elaborated

upon in any standard manuals, but they are the sorts of decisions that a
real operator must make. Clearly, in a system that is still on the drawing

boards, this information is even harder to obtain. But teasing this informa-

tion out of system designers is one of the real benefits that we feel HOS

provides -- HOS forces system designers to think about what they are asking
an operator to do and why and it requires that they put these operator

task specifications down on paper. These operator specifications are just
as important as hardware and software specifications to the overall specifica-
tion of the system, but have all too frequently been ignored in the past.

1.5 HOS IS A COMPOSITE OF OPERATOR PERFORMANCE MODELS
In this guide, we will be demonstrating how one develops these

'4 operator task specifications for a simple problem and how the specifications
are converted to the instructions that HOS is to follow. But, first, there is

a more basic question that we must answer -- how will HOS actually carry out

these instructions, i.e., what is the underlying model of the human operator
that is incorporated into HOS?

HOS IS A COMPOSITE OF OPERATOR PERFORMANCE
DERIVED FROM SELECTED HUMAN PERFORMANCE
LI TERATURE,

MODELS ARE ABLE TO BE CHANGED READILY
WITH ADVANCES IN THE STATE-OF-THE-ART.

HOS IS BEING VALIDATED BY COMPARING
RESULTS WITH OBSERVED PERFORMANCE.

4

The answer to this question is that HOS is, in fact, a composite

of a number of different models of human performance.* The HOS program has

been written in such a way that any one of these models can be changed

fairly easily, as the state-of-the-art of human performance modeling changes.

In this course, we will be describing the performance models as they cur-

rently exist in the program and, in addition, we will indicate what studies

these models have been derived from. You may find that you disagree with the

appropriateness of a particular model in particular situations or the relevance

of the experiments on which the model is based to the problems to which it
is being applied. Feel free to do so. We have simply selected a set of
models and experiments that we felt best represents the current state of

operator performance modeling for the types of problems we are dealing
with. HOS can be adapted to accommnodate other alternative formulations if

these seem more appropriate. There were many situations in which sifficient
data were unavailable to ensure the validity of a given model, as formulated
in HOS. Thus, we cannot be certain that all the submodels in HOS are as

valid as we hope they are. Rather than waiting until sufficient data might
be collected or until others formulate models which could be generally
accepted, we chose instead to get HOS into operation and then adapt and
improve it as it becomes necessary, by comparing its results with observations
of the performance of real human operators.

1.6 HOS PRIMITIVE FUNCTIONS

HOS considers the operator to be capable of performing seven
primitive functions:

(1) Obtaining information.

(2) Remembering information.

*Note that the analyst's description of the procedures the operator
must follow is also a model -- a model of how the analyst believes that the
equipment should be operated and/or a model of how an operator will, in fact,
use the equipment.

4 13

HOS PRIMITIVE FUNCTIONS

- INFORMATION ABSORPTION

0 INFORMATION RECALL

* MENTAL COMPUTATION

* DECISION-MAKING

0 ANATOMY MOVEMENT

0 CONTROL-MANIPULATION

* RELAXATION

4 14

(3) Performing a mental computation.

(4) Making decision.

(5) Moving a body part.

(6) Performing a control manipulation.

(7) Relaxing.

Every action that the HOS operator performs is a combination of
one or more of these primitive functions. Although an analyst can write
operator procedures that will force the operator to perform a particular
primitive at a particular point in a sequence of actions,* generally the
analyst will let HOS determin~e the primitives required to accomplish a
particular task for itself.

The primitive functions are often either imbedded in, or contain
within themselves, human performance models. For example, when a situation
arises in which the operator must move his hand to a particular device, there
is logic that determines which hand he will use. Similarly, when the operator
attempts to recall some item of information, there is a recaLz modeL that
is automatically assessed by the program that simulates the operator's short-
term memory processes. Because of the level at which these models operate,
we often refer to them as micro-mode is.

1.7 THE HUMAN OPERATOR PROCEDURES (HOPROC) LANGUAGE
The language that the analyst uses to describe the tasks the

operator is to perform is called HOPROC, the Human Operator Procedures
Language. HOPROC enables the analyst to access the micro-models directly

*Note that we did not say "at a particular point in time." The analyst
has some control over the time at which the operator will perform each action,
but not much. HOS itself determines how long each action will take and hence
the time at which a particular action will take place.

1i

THE HUMAN OPERATOR PROCEDURES (HOPROC) LANGUAGE

-- AN ENGLISH-LIKE LANGUAGE USED TO DESCRIBE Bnia THE OPERATOR'S
TASKS =Nf THE FUNCTIONING OF THE HARDWARE

-- ALLOWS BOTH IMPLICIT AND EXPLICIT ACCESS TO THE HOS MICRO-
MODELS

-- HOPROC INSTRUCTIONS LOOK LIKE THE INSTRUCTIONS THAT WOULD BE
GIVEN TO REAL OPERATORS

-- CAN BE THE BASIS FOR SYSTEMS DOCUMENTATION AND TRAINING

h 16

to describe how the operator is to perform his tasks. More commonly, how-

ever, the analyst simply describes through HOPROC the tasks that the operator

is to perform. HOS itself will then determine which micro-models are needed

in order to accomplish specific functions. Thus, HOS is like a real

operator -- given a set of instructions (in HOPROC), it can determine for

itself what actions are required in order to carry out the instructions.

As we shall show in the next sections, the HOPROC instructions themselves

look very much like the instructions that would be given to a real operator.

Thus, the HOPROC procedures developed for an operator station could serve

as the basis for the materials to train operators in the use of the system.

In addition, portions of HOPROC describe the functions of the hardware and

software in the crewstation. Thus, in addition to documenting operator

functions within the crewstation, the HOPROC description of a crewstation

provides complete documentation on the crewstation itself.

1.8 A SAMPLE HOS SIMULATION

The sample simulation that we will be using in this course is

an analysis of one of the tasks performed by the P-3C Sensor Station 3 (SS-3)

operator. Specifically, we will develop a simplified version of the operator's

radar plotting procedures. In developing the simulation, we will describe all

the major HOPROC language constructs and how one combines them into a

description of the operator's tasks. Then we will run the problem through

HOS, examine the outputs obtained at each phase, and discuss what can be

learned from them about the operator's performance.

By way of an introduction, the following sections describe the

SS-3 crewstation, the functions of the SS-3 controls, and the procedures

that the operator must follow when plotting radar targets. These descrip-

tions are then followed by examples of the outputs obtained by running HOS

for a specific set of targets. Later in this guide, we will discuss both

the inputs and outputs in more detail.

17

. 5 5

)SO)

ego*

.5 * M3=tn

In the discussion that follows, the names that will be given to

specific displays and controls in the operator's crewstation are shown in

capital letters.

1.8.1 The SS-3 Operator Station

Figure 1 shows the SS-3 operator station on the P-3C. The pri-

mary display used by the operator is the multipurpose digital display (the

RADAR-DISPLAY) on which both tactical symbology and raw radar data can be

displayed. The controls that will be used are the TRACK-BALL and some

momentary contact switches on the keyset tray -- the RADAR-MODE switch, the

'ROOK-VERIFY switch, and the ENTER-RADAR-CONTACT switch -- and a switch that

is located on the Radar Control Panel, the LOAD switch.

1.8.2 Functions of the SS-3 Controls

If we assume that the radar equipment has been powered up and is

functioning properly, then, when the operator depresses the RADAR-MODE

switch, the system will light up a set of controls (the radar matrix) that

indicates the subfunctions available to the operator. These controls permit

the operator to perform a number of functions related to the processing

radar data. We're only going to be concerned with one of these functions --

the ENTER-RADAR-CONTACT function (Figure 2). This control function enables

the operator to enter the coordinates of a radar contact to the onboard

computer. The computer will automatically assign a number to the contact,

record the time at which the contact was entered, and display a permament

symbol representing the contact on both the SS-3 operator's display and on

the TACCO's display.

But in order to enter a radar contact, the operator must identify

to the system which of the many potential contacts he is interested in. He

does this by manipulating a TRACK-BALL which controls the position of a cursor

on the screen. The cursor (the HOOK) appears on the screen as a small circle.

The operator must manipulate the TRACK-BALL until the HOOK encircles the

/

19

PRESS
MODE SELECT

A

LIGHTS AMBER

RADAR

SUB-FUNCTIONS DISPLAYED

DiS STORE ERASE
S/C SINGLE sic

RADAR SCAN RADAR

ENTER 77] HIG CLEARRADAR RAW PF POINT

CONTACT RADAR DATA

Figure 2. Radar mt.ix function.

20

MISSION

* PERFORM RADAR PLOT

-- ENABLE THE RADAR-DISPLAY

-- SEARCH FOR AN UNENTERED CONTACT

-- IF ONE IS FOUND, ENTER IT BY:

(1) MOVING THE HOOK TO THE RADAR CONTACT POSITION

(2) DEPRESSING HOOK-VERIFY

(3) ENABLE THE ENTER-RADAR-CONTACT FUNCTION, IF
NECESSARY, BY DEPRESSING RADAR-MODE

(4) DEPRESSING ENTER-RADAR-CONTACT

-- IF NO MORE CAN BE FOUNDi END

21

the particular symbol on the screen that he is interested in. Then, when

he depresses the HOOK-VERIFY pushbutton, the system will cause the encircled

symbol to blink. Any action that the operator then takes, such as depressing

the ENTER-RADAR-CONTACT pushbutton, will be understood by the system to

refer to the hooked symbol.

One issue that we have not discussed is how the operator powers

up the radar equipment in the first place. For our purposes, we will assume
that all that is required is for him to switch the LOAD switch from its

dummy load to its antenna position -- all other radar initialization actions

will be assumed to have been performed prior to the start of the simulation.

1.8.3 Outline of Operator Procedures
We can now outline what the operator is required to do in order

to plot a set of radar targets. The operator's mrijaion, in this case, is

to perform a radar plot. In order to do this, the operator must first
enable the radar matrix by depressing the radar mode pushbutton. Then he

must search for an unentered contact. If he finds one, he must enter it

by hooking the contact and depressing ENTER-RADAR-CONTACT. If he cannot

find any more unentered contacts, he is done.

The HOS code that describes this mission is shown in Figure 3

As you can see, there is a close correspondence between our verbal (outline)

description of the operator's procedures and the code that HOS needs in order

to simulate those procedures.

Examining the code, we see that HOS requires a definition of the

mission. In this case, the mission is simply to perform a radar plot,

although we could easily have added additional tasks to the mission. In a
4 normal task analysis, we might simply dig through some references at this

point to find an amount of time that we would use as the average amount of

time required to perform a radar plot. Alternatively, we might pull a

iZ2

OEFINE THE MISSION.
PERFORM 0AnAR-PLOT.
END.

DEFINE THE PROCEDURE To RADAR-PLOT.
ENABLE THE PAnAR-OISPLAY.
IF ANY QAOAR-CONTACT-STATUS IS NOT ENTEPED THEN

FNTF2: DESIGNATE IT AS THE RADAR-CONTACT OF INTEREST;
MOVE THE HOOK-POSITION TO THE
PAOAR-CONTACT-POSITION:

DEPRESS MOOK-vERIFY;
OEOPESS ENTER-RAOAk-CONTACT.

IF ANOTHER RADAR-CONTACT-STATUS IS NOT ENTERED
THEN GO TO ENTER NOW.

ENO.

OEFINE THE PROCEDURE TO ENABLE THE RAOAR-OISPLAY.
TUPN LOAD TO ANTENNA.
ENn.

DEFINE THE PROCEDURE TO ADJUST THE HOOK-POSITION.
CHECK: REPAn THE HOOK-POSITION.

IF IT IS OK THEN ENO.
OETEPINE THE TqACK-BALL-POSITION.
MOVE THE TPACK-RALL TO THE RESULT.
IF THE RATE OF THE TRACK-BALL IS NOT 0,0 INCHES

THEN WAIT.
GO TO CHFCK NOW.

DEFINE THE PROCEDURE TO ENABLE HOOK-VERIFY,
ADJUST THE HOOK-POSITION.
ENO.

DEFINE THE PROCEDURE TO ENARLE ENTEP-RAOAP-CONTACr.
DEPRESS QAOAQ-wOOE.

" Figure 3. Operator procedures for the radar plotting simulation.

23A

T

number to use out of the air. HOS would also permit you to do this, but

it can instead estimate for you the amount of time that it =aLZ. takes

to do the radar plotting, based on the number of contacts on the screen and

the characteristics of the controls, both of which could vary considerably

during a mission or from crewstation to crewstation. To do this, HOS
requires an answer to the question: How does one do a radar plot?

The answer is in our outline of the operator's procedures -- the

operator must first enable the radar matrix. How is this done? By depres-

sing RAOAR-MOE. He must then search for any radar-contact-symbol that is

not entered and, if he finds one, enter it by moving the hook to the radar-

contact's position, depressing HOOK-VERIFY, and depressing ENTER-RADAR-

CONTACT. He must then serach for another radar contact that has not been

entered and enter it in the same way. If there are no more to be entered,

he's done.

1.8.4 The HOS Radar Plotting Simulation

Once these operator procedures have been combined with additional

procedures that describe how the equipment functions, with information on

the actual crewstation layout, and with specific target data, HOS can simulate

the operator's functions within the crewstation. The data that HOS generates

on the operator's performance can then be run through an analysis program,

HODAC, that can produce eight different types of analyses and an almost

infinite number of variants on these analyses according to the interests

of the analyst. Examples of these analyses are shown in Figures 4 through 12

to indicate the wealth of information available from HOS.

Figure 4 is an example of a Timeline Analysis. It documents

what procedure the operator is working on at any instant and what each body

part is doing. The granularity of the Timeline Analysis can be chosen by the

analyst -- in this case, one second snashots have been used. A related

analysis is the Channel Loading Report (Figure 5) which indicates the

24

o A . . .

x9

A

0)

0 ja.-i C

coa-J
C6 Z)

04 Ix .0 4x .4 9I 4 9I

z z

- r

It I- P2
I C K3 L3 LC Lc
-C! 2 LaW0 u

0
z X A loc -

0 0 6.V
o 7 1, :a 0 -ja0z vr

- z b. 2 0. ZE z G.-.E 0. z G.EP v 0z 0. z 4
I.-9 w-o ; 0 - UE ; U; - U -- u 0-W-

- w. 0' 4 e a 4 a24 020 V4 2 0 6 ow 20 w4 0 l
t 00 0 0" a4%n 40 VI a 60 03 W. 4 ,04' I4 v 0

to 0o 4 .4 4 14 4 *91 1 T 41 .

71 '4 x. ox Oa 0. w 0. 0 a x .2 -l3l

o CL 22 *2 2 *2

L a1 CJ 9L (L IL CL C I
0. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ c x. .J 1. - -C- - - -

La I2 24 4 0 4 e 4 4

4 - 1 0 ~ . ~ 25

i

.

* .::: ..-. .. * a. . *. : : .. * . . *.....

A

z 0.

z-

P a :4 . .oa Z: 4'e : "

S.

i:1 % " i 4t1 ,!1

6r c 7 r

-~~~~e . s .as .s s .s. .

- mss sass mea. as
a sessass sse se

percentage of time within each snapshot interval that each body part is
occupied. The Devices by Body Part Analysis (Figure 6) tabulates the total

amount of time each device was used by each body part and calculates the
means and standard deviations for each of three basic functions -- moving

the device, reading information from the device, and performing a control
manipulation on the device. The Devices by Usage Analysis (Figure 7)
provides summnary data on some of the other types of functions the operator
may be performing on each device. The Devices by Procedure Analysis
(Figure 8) provides usage data statistics by procedure. The Procedural

Analysis (Figure 9) summarizes this data over procedures. The Label
Analysis (Figure 10) provides sunmmary data for procedures and certain types

of within-procedure statistics. And, finally, the Link Analysis (Figures 11
through 12) provides data on the frequencies of usage of groups of displays
and controls and transistions from one group to another.

Section 4 will describe in more detail how each of these reports
is to be interpreted and used.

27

a F.

~.44

Ir

220

60.0

tA,

v k0 a Cr 0 0 L2 4

c - c rc - c -.
tz s j a,(=4 4

4~ ~ ~ ~ - 4 7 ~ A 5A

22

* a 0

* a
V. A

a0 a-

CL a 4 f a -

a a-a

4 . .
2U

i 0 4it &N 4

-J , a 4 a a c c c c

*I
ataa

2 29

* N 6
* 4 0
* 0 0

* N -
N 40

N
* 4 4

- 0 -1% -
%

~A 0 4
0 N 4 0
* . .
2 4

N

N

4
U

2

'., 1.
N 0 0 *1
444

1*6 6 6
N 0 0 04 -

-,
4 0 4 4
2

* a a 0 0 0 a a a a a * a a a a a a a a a a- 4 a a a a * a a a ~ a a a a a a a a a a a a
- ~ - 2 a 0 a
- a a -o ~ -

-a 3.I-------------------------N N N N N N N N N N

o * N N N N N N N N N N N 4 4 4 4 .0 4 4 4 4 .04 U0 4 4 S I S S I I I I I I 6 6 6 * S 6 I I U I * * I
4 2 * *---0
2 4 2 N -

'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S . 'S 'S 'S 'S 'S 'S 'S
* 0 0 N N N N ~I N N N N N 0 4 4 4 4 4 4 4 4 4

4---------------4 N N N N N N N N N
2 2~A

SN

2 4 0 4 4 4 a a a a a a a a a aa * ~ ~ a a a a a a a a a a
S a 0 S S S a 0 5 a a a a aI

.3 -----------------
0 2 N 4 A A 4 N N N N N N N N N

- N N a a 0 a a a a 0 0 a a
*
A
4 I I 6 3 I I 3 6 6 6 S I 6 3
2 ON 0
'3 -
'3 'S 'S . 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S
2 - U - 4 N N N N N N N N N
- a 4 ~ - a a a a a a a a a
-
'3 N
2

A - - - - - - - - 4- ~ 4 4 4 4 4 4 4 4 4 - - A A A ii A A A A A
U - - - = - - - - A - 0 '3 '3 0 '3 0 0 '3 0
4 4 A A A A A A A A A A 3. 3. 3. 3. 3. 3. 3. 3. 3.
- - 6 0
2 A - N A .0 A 4 N 0 0 3. - N A 4 A 4 N 4 0
C

- U N -
4 U

2 4 4 4 4 4 4 4 4 4 4 4 ~ 4 ~ 4 4 ~ ~ ~ q *
0 3. ~ N N
N 400 ~22Z;22Z222Z22zz;g2zz
'S '324~CCC~00a000000000~g 0 '3 0
* 0 1 ~ 2 U
*
'S U = 2
0 - 4 4 ~ ~ 4 4 4 4 4 4 4 4 4 4 4 ~ 4 4 4 4 4 4 ~ ~ 4 *
* 200 ~ 000000000000000 0 000 000

4 4 '3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ 4 4 4
2 2 ~ 2 2 22 2 3. 2 2 3. 2 22 2 2 2 3. 2 S 2 2 2 3

30
.1

Nu

Nu

ca

z

0 4

NC

zz

C 4

A C4

CL C

- '0

U t f

31 *

ma .. 2. 2 22 . 2

-,- 41 ~ a 4

.41 4w M 3.

U, -141 .

a

ou ta 00 0 .

ata

c a
* ~Ar

320

H
H

Al I
'U

'34

I 0404 ui.*o.t
0101 0404
0000 -. 000

I * * *

GIn
. . . .

Ah~04 9-.0

I I~JAJ

~ I 0

'U I %%S% %%%%
A ~ I ~t04 A19019

nu~ ~ I ~c2I*00 P-~0I9 0

0 0 4 4 C
~lz 2 I - - 0
4W 0 I

'3 22 U
2 4W 0000 0000
- 0 0000 0000
- ~0 0000 0000 u
o - I -j 9000 ~Al0AJ

~000 Al000 0
? 4~ El
40 21 --

o 0 ewi~ miglal,
4 2 ~. g

22
'31 I-

I - '%%%% '%%%
o p9000 ~N0Al 6I '9000 AlCOC
2 I .

I '99 - -

'3 I
0
'1 0000
3. 0000

0300
o I
I
'U
0 I 4000

-000

In
1

. . .

is is N I
'U'

-'S.-,-

4000
00 C

9 .J -~

.1
w U w

I ~
%I~J -% %IM

~IUI W I- I
K ~ 'U 1 W .~ 'U

* 0 I ~ I 0 1 0 I
0 ~I Z -2- -ZZ- -
-. .J0~ U~2~ K~

0 I W4-W4WW4Ild
0 I
-. I 0CUC~0CUGM0CUQ
0 9 Z~4~2044I4~
0 I~ 2

33

0I

Ii

.10

- I

9I

Si 0 "%

434

. ..

,--* .. . *.... . . *,,0 *,,

Z 7

This page is intentionally
left blank

3

/

35

INFORMATION ABSORPTION

& MODALITIES ARE EYES, HANDS, AND
FEET

0 HEARING, SPEECH, AND KINESTHETIC
CUES ARE N= MODELED

0 MODALITIES ARE ASSOCIATED WITH
DEVICES

* OCCURS AS A SERIES OF U2L.,Q
A E CON-

)

'a

3

I-

2. THE HOS OPERATOR MODELS

2.1 INFORMATION ABSORPTION

2.1.1 Absorption Modalities
The HOS operator has three modalities by which he can obtain

information -- his eyes, hands, and feet. Currently, neither hearing nor

Speech nor any kinesthetic cues, such as vibration, balance, or the per-

ception of external motions are simulated. This is not to say that these
types of cues don't exist -- rather, we did not feel that there are currently

any satisfactory models for the effects that these factors have on an

operator's performance that operated on a level such that we could include

them in HOS.

When describing the displays and controls in the operator's crew-

station, the analyst must identify the modality (eyes, hands, or feet) that

the operator is to use when obtaining information from each device. Thus,
if the analyst were describing the displays and controls in an automobile,

he would indicate to HOS that the operator is to use his eyes to read the

fuel gauge, his hands to "read" the steering wheel, and his foot to "read"
the accelerator.

The process by which the operator obtains information is the

same for each modality and consists of a series of micro-absorptions. Each
micro-absorption requires time. As the operator spends more time (more
micro-absorptions) reading a device, both his knowledge of the device's
value and his confidence in that knowledge increase until his confidence

exceeds a threshold, at which time the absorption process is terminated.*

*Several other conditions may cause an absorption to be terminated, as
will be discussed below.

37

2.1.2 Absorption Hab Strengths

The quantity that represents the operator's confidence in his

knowledge of the value of a device is termed h ab2-tigth, after the learning

theory concept called "habit strength" by Clark Hull. Each device has an

associated hab strength that builds up during absorption. As the operator

spends more time absorbing information, the hab strength associated with

that information increases until it exceeds a threshold value, at which point

absorption is teminated.

As an example, assume that the operator is attempting to read a

device (e.g., a warning light) that has two discrete settings -- on and

off. Successive micro-absorptions will cause the hab strength to increase

as shown in the top curve in Figurel3 -- so that in 3-4 micro-absorptions,

the operator has, for all intents and purposes, established in his own

mind whether the display is on or off. Using a basic micro-absorptlon

time charge of .04, such a read operation would require .12-.16 seconds

(as compared to an average rate for reading words of approximately .18

seconds per word). For a display that is more difficult to read, more

micro-absorptions are required to reach a comparable hab strength, as in

the second curve for which the micro-absorption time charge was .12.

Similarly, displays that have more potential values -- i.e., displays with

more settings or continuous displays -- require still more micro-absorptions

in order to reach a comparable hab strength. The bottom two curves shown

in Figure 13, for example, represent the increase in hab strength for two

continuous displays with micro-absorption time charges equal to those of

the two displays in the upper curves. It should be noted that the equations

used for continuous displays are the same as those for discrete displays

with seven or more settings -- i.e., discrete displays with more than seven

settings are treated as if they were continuous.

Figure 14 shows the effect that the micro-absorption time charge can

have on the amount of time spent in a singlecomplete (macro-) absorption.

The four curves represent the same four displays as in the preceding figure.

38

- -I

1 .04 :.12
1.0- E .0 - N2-

-/E .12.4-

t I . - ----DISCRETE

,J / /

2 CONTINUOUS
E MICRO-ABSORPTION TIME CHARGE (SEC)
N - NUAM8ER OF SETTINGS

MICRO.ABSORPTIONS

Figure 13. Hab stmnth as a function of the number of micro absorptions.

E 1.041.0- - N-2 E_ t - 0'E.12

aN -i

6E / . 12

4-

4 1 4

/IMN

;, j , //
! ' I~/I * MICRO-ABSORPTION TIME CHARGE (SIC)

J4 , N - NUMBER OF SETTINGS

I.2 3 .4 .5 ,6 .7 8

TIME

Figure 14. Hab strength as a function of absorption time.

39A

In Figure 14, however, it can be seen that if the operator spends as muuch
as .4 seconds in the absorption process, the hab strength for the "easy-
to-read" continuous display will exceed the hab strength for the difficult
discrete display.

The primary criterion for terminating an absorption process is
for the hab strength of the device value being absorbed to exceed a threshold
value, but there are several other conditions that the analyst can impose
&s input parameters that will terminate absorption. These conditions are:

0 A maximum amount of time to be spent absorbing.

* A maximum number of micro-absorptions.

* A tolerance value that specifies that the hab strength has
reached an asymptote.

* A tolerance on the accuracy to which the operator is required
to read any device -- after which he is considered to "know"
the value, of the device.

The interaction between these termination conditions are discussed in more
detail in the Appendix.

2.1.3 Absorption Estimates and Errors
During the absorption process, the operator acquires knowledge

about the value of a device and confidence in his knowledge of that value.
The value that the operator believes a continuous device to have (the

devie byadding an error term that is normally distributed about the actual
valu andwhose magnitude is dependent upon an accuacy~ for the device as

supidby the analyst. Thus, if the analyst has specified that a par-
tclrdevice can be read to an accuracy of two percent, then two percent
ofthe actual value of the device is used as the standard deviation when
comptingthe value that the operator believes the device to have on any

spcfcabsorption.

40

ABSORPTION ESTIMATES

-- NORMALLY DISTRIBUTED ABOUT
THE ACTUAL VALUE OF THE DEVICE

-- STANDARD DEVIATION IS SUPPLIED
BY ANALYST AS A PERCENT

-- E.G., A DISPLAY CAN BE READ t 2%

4 41

I NFORMATI ON RECALL

LONG TERM RECALL OF

-DEVICE LOCATIONS
-DEVICE CHARACTERISTICS
-- PROCEDURES
-MENTAL CALCULATION PROCESSES

SHORT TERM RECALL OF

-CURRENT DEVICE VALUES

SHORT TERM MEMORY

* LINKED TO PERCEPTION VIA HAB
STRENGTH

I PROBABILITY OF RECALL = H

* REGION OF /ANEAR-RECALL"

* EFFECT OF REHEARSAL

42

I.

2.1.4 Accessing the Information Absorption Micro-Model

The analyst can force the HOS operator to read the value of a

device by means of the statement:

READ device

In addition, HOS will automatically cause the operator to read the device

whenever the operator needs its value and can't remember it, even if there 1
is no explicit READ statement.

2.2 INFORMATION RECALL

2.2.1 Long-Term and Short-Term Memory

The HOS information recall model consists of two submodels -- a

model for short-term memory and one for long-term memory. The long-term

memory model is currently limited to the recall of certain types of pre-

determined information. Specifically, the HOS operator is assumed to have

a completely ac,:arrate and instcntaeous recall of the Zocations of all the

displays and controls in his crewstation, most of their char acter-,stics, the

procedures that must be followed in carrying out a job, and the caLcuZation

processes for any mental computations that must be performed. These assump-

tions are consonant with the basic assumption of the HOS model -- namely,

that the operator being simulated is a trained operator who performs

routine operations automatically.

The short-term memory model is more elaborate. Short-term memory

is considered to be linked to perception through the hab strength concept.

As explained above, during the process of absorbing information, the operator's

confidence in his knowledge of the value of a device increases until it

exceeds a threshold at which point the absorption process is terminated. The

ultimate hab strength associated with the device, a value between zero and

one, constitutes a measure of the operator's confidence in his knowledge

of the device value.

43

!-

UA

UA

U
-.

2

LU

2 3 .
96N

a UA

o J ~J

During recall, the hab strength is used to determine the prob-

ability that the operator will recall information absorbed from a device.

The probability of successful recall is given by:

P =H
I

where H is the hab strength and t is the time in seconds since the last

absorption. Since H is a value between zero and one, the probability of

recall is one at time zero -- i.e., the operator has an instantaneous memory

of the value of a device that is perfect, to the extent that he learns the

information in the first place. One second after.the completion of an

absorption, the probability of recall is exactly equal to the hab strength.

As soon as absorption is complete, the probability of recall begins to

decay exponentially as shown in Figure 15. Thus, within 60 seconds after

an absorption that had raised the hab strength to .7, the probability of

successful recall would be less than .1. If, however, the hab strength

had been raised to .9, the probability of recall would stay above the

level .1 for approximately seven minutes. Figurel5 shows recall probabilities

from some of the available experimental data on short-term memory and how

these data correspond to various hab strength values. Based on these data,

we have chosen .8 as the default value for the hab strength threshold --

the value that is used to determine when the absorption process is terminated.

The value of P from the probability of recall equation:

P H=Ht

is compared against a number drawn at random from a uniform distribution.

If the randomly drawn number is less than P, then the information is
"remembered." If the randomly drawn number is much larger than P, then the

information is "forgotten." If, however, the randomly drawn number is

close to P, then the model assumes that the operator is in a region of
"near-recall," where given a little more time, he might remember. A second

45

.4-

~(7.P* THAMS

20 40 so so 100 120 14016

FIiur I&. Short term recail regions.

t.0

.4

2 -

T T I
20 .1a 50 90 100 120 1.40 160

TIME SINCE LAST A8SCqPTICN SEC)

Figure 17. Recail increments for continuous devices.

46

random number is therefore drawn and compared with P to determine whether

the information is remembered, forgotten, or in the near-recall region.

Usually a second draw will suffice -- the random number will either be in

the remembered or forgotten region. But the process could theoretically go
on for three or more tries. Each try results in the addition of a small
amount of time, the short-term memory cyc~e time, to the total time for
retrieval from short-term memory (Figure 16).

When the operator recalls a value, the hab strength associated

with that value is changed in order to simulate the effects of rehearsal.
The remembered value is given a hab strength that is lower than if the
information had been absorbed again, but higher than it would have been had

the normal decay curve been followed (Figure 17).

There are several features of this recall model that deserve
some commuent (and probably some future work). First, the process by which

the hab strength associated with any item of information is increased and
recalled is independent of the value of information to the operator -- the

threshold value is the same for all information and consequently all items
of information follow essentially the same curves for the increase and
decrease in hab strength. This is clearly unrealistic -- information that
is of greater value to the operator should decay less rapidly and should
be learned to a higher level of confidence than less important information.
Secondly, the recall model has no explicit provision for allowing information

to transfer from short-term memory to long-term memory, though there is
an effective transfer that results from rehearsal for the real human operator.
Third, there is no linkage between items of information -- if, for example,
the operator depresses a switch that changes the value of a display, that
action will normally not affect the value that the simulated operator will
recall for the display, whereas a true operator would certainly know that

the displayed value had changed.* And fourth, there are no external cues

*Although the analyst can, in fact, specify that such linkages exist
when coding the procedures.

47

AREAS FOR IMPROVEMENT IN MEMORY MODEL

-- AB STRENGTH IS INDEPENDENT OF THE VALUE~ OF INFORMATION

-- NO EXPLICIT PROVISION FOR TRANSFER FROM SHORT-TERM TO
LONG-TERM MEMORY

-- NO LINKAGE BETWEEN ITEMS OF INFORMATION

-- NO IMPACT FROM EXTERNAL CUES

48

that impact the perceived or recalled value of a device, as the view out
the window might cue the recall of the altimeter value for an aircraft

pilot.

2.2.2 Errors During Recall

For continuous devices, there is a portion of the recall model
that simulates the decreased accuracy associated with the recalled value.

The basic premise behind this feature of the recall model is that as con-
fidence (i.e., hab strength) in the value of a device decreases, the pre-

cision of the value that the operator recalls for the device will also
djecrease. Thus, if at some later time, the operator is asked for the value
of the device, then the operator will be able to supply fewer "significant
digits" as the time from the last absorption of the value of the device
increases. We tern this process rodu~a' decay. The modular decay function

is such that given an initial device value of, for example, 123456 and an
initial hab strength of .8, the modularly decayed values would be as shown

in Figure 18.

2.2.3 Extrapolation of Values

If the operator can recall the value that a continuous device
had the last time he read it, then HOS enables the operator to extrapolate
its value to the current time. The extrapolation is linear and based on
the two preceding absorbed values and the times when those values were

obtained. It is the responsibility of the HOS user to declare whether or
not extrapolation is to be permitted for each device.

2.2.4 Accessing the Information Recall Micro-Model

The analyst can force the operator to attemp t to recall the value

of a device by the use of the statement:

RECALL device

However, this statement is rarely used. Rather, the recall model is almost
always accessed implicitly by simply including the device name within the

49

0 A j L

IL

~LU-J N

> ax

UJ -1
UA In

>s~ wA 4N 4N

wa z

'46

wz1 w C0 RO10

LIM

context of another statement. When HOS recognizes that a device value is

needed, it will attempt to recall the value.

2.4.5 Scope of the Information Absorption and Recall Models

The estimated value of a device is the only characteristic of a

device that is either recalled or read by the HOS operator. The operator

does, however, maintain other information on other device characteristics --

desired values, upper limits, lower limits, etc. -- but these quantities

(termed device parameters) are considered to be resident in the operator's

long-term memory and therefore are not subject to the information absorption/

recall processes. The various device parameters are listed in Figure 19.

2.3 MENTAL COMPUTATION

The mental calculations performed by the HOS operator are termed

operator fzmctions, or simply f' nctions.

The mental calculation micro-model uses the hab strength construct

in much thesame way as the information absorption and information recall

micro-models. The result of a mental computation has an associated hab

strength that represents the operator's confidence in the computed data.

As the operator spends more time on the computation, his confidence in his

estimate increases until either:

0 The hab strength threshold is exceeded.

* The hab strength has asymptoted.

* The maximum number of iterations through the hab strength
incrementing process has been exceeded.

0 The amount of time spend in computation exceeds a maximum
allowable computation time.

The recall model for mentally computed data is identical to the model used

for any other type of data.

51

DEVICE PARAMETERS

0 DESIRED VALUE

* RATE OF CHANGE

* TIME (OF LAST ESTIMATE)

* X AND Y COMPONENTS

* UPPER AND LOWER LIMITS

* CRITICALITY

* STATE (ACTIVE OR INACTIVE)

* ESTIMATED VALUE

Figure 19. DeWice parametam

~52

rhe basic difference between the mental computation model and

the information absorption model is that, in the latter, information is

absorbed from a display or control in the crewstation, whereas in the former,

displayed information is used to determine a value that is not displayed
anywhere in the crewstation. For example, a typical mental computation
when driving an automobile is determining how much farther one can go on

a tank of gas. The computation requires the absorption of an item of
information (the amount of fuel remaining) coupled with some prior knowledge

(the number of miles per gallon).

When a mental calculation is required, HOS will determine what

information is needed in order to perform the calculation. If the HOS

operator can remember the information, the calculation is performed at
once. If he cannot remember the information, an appropriate sequence of
actions is initiated to enable the operator to obtain the data. In the above
example, the displayed information required is the amount of fuel remaining.
If the operator cannot remember this, HOS would cause him to look at the

fuel gauge and read its value.

Each mental calculation can require as many as ten different data
items. These may be the values of displays or controls or the results of

other mental calculations. An unlimited number of parametric values are
also allowed. The amount of time required for a mental calculation is

considered to be the amount of time required to gather all the items of
information needed for the calculation plus some additional time to "put

it all together." Because of the high potential variability in a function

calculation, the analyst is required to supply a function computation time
for each function -- HOS itself will supply the times required to gather

all the items of information needed for the calculation.

A second difference between the mental computation and information

absorption models is that in the information absorption model, the minimum
hab strength associated with a device is dependent on the number of settings

53

MENTAL COMPUTATION

"- USES HAB STRENGTH CONSTRUCT

-" COMPUTATIONS REQUIRE INFORMATION

FROM OTHER DEVICES

-- ANALYST SUPPLIES A COMPUTATION TIME

-- HAS STRENGTH IS DEPENDENT ON HAB
STRENGTHS OF COMPONENT DATA

-- CALCUALTIONS ARE ERROR-FREEi DATA INPUT
TO CALCULATIONS ARE NOT

/

.
54

associated with the device. In the case of mental computations, the hab

strength associated with the operator function is the minimum hab strength
associated with any of the components in the function calculation.

Errors in mental computation are-assumed to be the result of
errors associated with the data that goes into the calculation itself. The
calculation process itself is considered to be error-free. Thus, if the

operator makes an error or obtains an inaccurate data value when either recal-
ling the data or reading the data needed for a calculation, then the result of

the calculation will be incorrect, or inaccurate, according to the incorrect-
niss or inaccuracy of the incoming data. If the data values are correct and

accurate, then the result of the calculation will be accurate. It should be
noted, however, that, as a result of the way in which mental calculations
are described to HOS, the analyst has the ability to inject errors into the
function calculation if he so chooses.

2.4 MAKING A DECISION

HOS decision-making takes place at two levels -- the inter-

procedural and the intra-procedural levels. To understand what is meant

by this, we have to explain what is meant by a procedure, A procedure is
an operator task consisting of any number of steps, any step of which can
invoke the execution of another procedure or any other operator action. For
example, the operator's mission in any particular simulation is a procedure
that invokes other procedures -- a pilot's mission may invoke a procedure
for takeoff, another for cruise, another for landing, etc. Within these
procedures (or any procedures that they invoke) there are steps that describe
operator actions -- reading a display, adjusting a control, etc. Uecision-
making can therefore operate at two different levels -- deciding what procedure
to perform from a set of available active procedures, or deciding w~hat to do
next within any particular procedure.

55

HOS gives the analyst the option of both limited and total control

over these decisions. The analyst can opt for totaZ controt in the sense

that simulations can be constructed that force the operator to follow a

specific sequence of steps and procedures. The analyst can, instead, choose

Zimited dontroZ in the sense that the exact sequence of task and subtask

operations that an operator will use is unknown -- the simulation can be

constructed so that the HOS operator is allowed to make decisions for him-

self in accordance with a flexible task structure. Such a flexible structure

is appropriate because, like a real operator, HOS can adapt its actions to

situations. The power of HOS lies in its ability to adapt its performance

to situations in a natural and realistic fashion.

Decisions about what to do next 'wihin a procedure are fairly

simple. HOS will attempt to execute each step in a procedure in sequence

until it can go no further, for whatever reason. If it finds itself blocked,

it will attempt to "unblock" iteslf. If it can, it will continue marching

forward; if it can't, it will look for some other procedure to work on, at

which point the decision-making logic for selecting a procedure is invoked.

As it marches forward in a procedure, HOS may encounter a atate-

ment that requires a decision, i.e., an IF statement. The IF statement

requires the operator to make a decision about the current status of informa-

tion or events in the simulation. If the condition(s) tested is (are)

satisfied, then it proscribes a set of actions to be taken. If the condition(s)

is (are) not satisfied, the actions are not performed. A small time charge

is assessed for this decision-making function over and above the time

charges associated with gathering the information needed for the decision.

There are basically three types of events that will block the

operator:

(1) An action is required that the operator cannot perform
because the action requires body resources that are busy
doing something else.

56

DECISION MAKING (WITHIN A PROCEDURE)

OPERATOR EXECUTES STEPS SEQUENTIALLY UNTIL "BLOCKED"

* BODY PART UNAVAILABLE

* CONTROL DEVICE UNAVAILABLE

* INFORMATION UNAVAILABLE

A STEP MAY REQUIRE A DECISION

ANOTHER PROCEDURE CAN BE INVOKED TO BE EXECUTED

* IMMEDIATELY

0 AS TIME PERMITS

* PERIODICALLY

57

DECISION MAKING (BETWEEN PROCEDURES)

SELECTION OF A PROCEDURE IS DEPENDENT
ON:

0 CRITICALITY (PRIORITY) OF THE
PROCEDURE

0 HOW LONG IT HAS BEEN SINCE THE
PROCEDURE WAS LAST EXECUTED

INITIAL CRITICALITIES SET BY ANALYST
AND CAN BE CHANGED DYNAMICALLY

EFFECTIVE CRITICALITY FOR MONITOR PRO-
CEDURES IS DEPENDENT ON HOW CLOSE A
DEVICE IS TO ITS DEFINED LIMITS

58

(2) The operator requires information that is currently unavail-
able because a device in inactive (not enabled), or

(3) The operator must perform a control action that cannot be
performed because the control is inactive (not enabled).

Of these situations, the latter two are the more comm~on. When
they occur, HOS will automatically invoke a special type of procedure --

an enabhie procedure -- whose function is to activate the device that is

inactive. When the first situation occurs, HOS will simply go off and work

on another procedure until the required body part is free.

One of the actions that can be performed within a procedure is the
invocation of another procedure. When a procedure is invoked, the analyst

can specify either that:

(1) The procedure is to be executed immediately and no more
steps in the current procedure are to be executed until
the invoked procedure has been completed, or

(2) The invoked procedure is to be placed on an active procedure
List and is to be executed as soon as appropriate, or

(3) The invoked procedure is to be executed periodically until
removed from the active procedure list.

In situation (1), control transfers immiediately to the invoked

procedure and no more steps in the invoking procedure are executed until the
invoked procedure is completed. The active procedure list, formed by invok-

ing procedures by methods (2) and (3), is the list of procedures available

to the operator when he finds himself blocked in his current procedure. Pro-
cedures placed on the active procedure list by method (3) are called monitor
procedures in that they are usually used to cause the operator to periodically

monitor a particular display or control.

Finally, the analyst can force a procedure to be selected from the
active procedure by using special forms of the IF and GO TO statements (see

below).

59

2.0

10 20 3 4 5 60 70 86

TIME SIN4C2 LAST EXECUTED

Figure 20. increase in procedurai criticality with time.

ESTIMATED VALUE - Z' UPPER LIMIT

S-4 ESTIMATED VALUE - UPPER LIMIT

ESTIMATED VALUE O ESIRED VALUE 0

2

10 :0 30 40 so 70 so
71ME SINCE LAST EXECJTED

Figure 21!. increase in criticality for monitor procedures.

-0

When a procedure is to be selected from the active procedure list,

there is a model that represents the operator's procedural selection process.

This model considers two factors:

(1) The criticality (priority) of the procedure, and

(2) How long it has been since the procedure was last executed.

A detailed discussion of the interaction of these factors is

presented in Appendix A of this document. Briefly, as the length

of time since the procedure was last executed increases, the effective

cz-ticaiiry of the procedure increases (over an initial criticality that

can be set by the analyst), as shown in Figure 20. In addition, for

monitor procedures, the effective criticality Is further modified by a

factor that is dependent on how close the device being monitored is to a

defined set of limits. As the estimated value of the device approaches its

limits, the effective criticality of the device increases. When it exceeds

the defined limits, the effective criticality increases very rapidly, as

shown in Figure 21. The computed effective criticalities for each procedure

on the active procedure list are compared and the procedure with the highest

effective criticality is chosen as the next procedure to work on.

2.5 ANATOMY MOVEMENT

The anatomy movement micro-model is almost always accessed implicitly -

i.e., the analyst will rarely issue a commnand that will force a body movement.

Rather, HOS itself will determine whether a body movement is required in

order to accomplish the objective of an instruction. If it decides that a

body movement is required, HOS will automatically select the appropriate

body part, move it to the required location, and add to the simulation time

a computed estimate of the amount of time the action would have taken a

real operator. For example, suppose a procedural statement says:

TURN SWITCH-A ON.

6l

BODY PART SELECTION

0 EYES

* HANDS

-- RIGHT OR LEFT?

-- IS HAND BUSY?

-- SWAP HANDS?

O FEET

-- RIGHT OR LEFT?

-- IS FOOT BUSY?

62

If HOS decides that this action is necessary,* and if one of the operator's

hands is not already on SWITCH-A,** HOS will select a hand, "move" it to

SWITCH-A, and charge an amount of time equal to the time that a real operator

would have taken to move that hand to SWITCH-A from wherever the hand was

at the time the instruction was issued.

Thus, the moving and grasping primitive function consists of two

micro-models -- one to determine which body part to use for a particular

action, the other to assign a time charge for the movement. The body part

selection micro-model is based on several common-sense principles. The

first is that the body part to be used is determined by the function to be

performed and the device being referenced. Thus, if the operator is going

to be reading data from a device, the eyes are usually the appropriate body

part to use. However, there may be some devices whose value cannot be

determined visually -- touching them with a hand or foot may be more appro-

priate. Some devices may use two modalities -- the eyes are used to absorb

information while the hands are used when the device is to be altered. HOS

permits the analyst to specify for each device the most appropriate modality

for each function (reading and/or altering).

If the operator's eyes are to be used for a specific function,

there is no problem -- the HOS operator has only one pair of eyes which are

immediately moved to the device. The time charge assigned for an eye move-

ment is computed from an equation that was developed by fitting the data

from an experiment that involved lateral eye movements (Dodge and Cline,

1901) and from an unpublished experiment by Wherry and Bittner that involved

both lateral and convergence movements.

*SWITCH-A may be ON. A real operator, if he remembered this, would not

perform the action. Similary, HOS would decide whether the sirm'lated operator
remembered whether the device was on and, if he did, would not initiate the
body movement.

**Assuming that SWITCH-A is a device that is turned on by hand.

63

ANATOMY MOVEMENT (MOVING AND GRASPING)

* EXPLICIT ACCESS:

LOOK AT THE ALTIMETER

* IMPLICIT ACCESS:

TURN SWITCH-A ON

I SELECT APPROPRIATE BODY PART

* MOVE IT TO REQUIRED LOCATION AND ADD
TIME

64

The equation:

T = .14324 A + .0175

where

A = max (Ae, O) + .2 min (A6, AO)

and

I'= ar (P1 P 2
.275) tan-'1 .25

=jCos-, 1TFF2~

P 1 = vector from design eye point to fixation point 1

P= vector from design eye point to fixation point 2

assumes that both the lateral and convergence movements can proceed in
parallel at the same rate with the total movement time being dependent on
which movement takes the greater amount of time.

When one of the operator's hands is needed, the problem is not
quite so simple -- it is necessary for HOS to decide which hand to use.
The logic that HOS uses is fairly complex: (Figure 22.)

(1) HOS will attempt to use the hand that is currently closer
to the device, unless that hand is currently busy doing
something else.

(2) If the preferred hand is busy, but will be free "soon,"
where "soon" is an amount of time that can be set by the
analyst, then HOS will "wait" until the preferred hand is
free and will then "move" the operator's hand to the
device.

(3) If the preferred hand will not be free soon, then the
operator's other hand is used -- assuming that it is free and
can reach the device.

(4) If the operator's other hand is not free, but will be soon,
HOS will again wait until that hand is free and then use it.

65

I WHICH BODY PART IS APPROPRATE TO THE TASK
6 WHICH BODY PART IS CLOSER

* IF THE PREFFERED BODY PART IS "BUSY." WILL
IT BE FREE WITHIN A REASONABLE AMOUNT OF TIME

I IF IT WON'T BE FREE, CAN THE FUNCTIONS WHICH
IT IS PERFORMING BE PERFORMED BY ANOTHER BODY
PART

Figure 22. Anatomy Movement Logic

66

(5) If, however, the operator's other hand cannot reach the
device, then a determination is made as to whether a han~d
mwap should be initiated. In a hand swap, the less pre-
ferred hand takes over the function being performed by the
preferred hand so that the operator can move the preferred
hand to the device.

(6) If both hands are busy and won't be free for some time, or
if a hand swap cannot be performed, HOS will decide that the
instruction is unexecutable and will delay the execution of
the procedure in which that statement is found until one
of the operator's hands is free.

Similar logic pertains to the use of the operator's feet with the
eiception that 'swaps" cannot take place.

The time required for a hand or foot movement is assumed to depend
on both the magnitude and the precision of the movement. The equations that
determine how long a hand movement will take are a combination of the results

of experiments by Fitts and by Topmiller and Sharp and are discussed in
detail in Appendix A of this document. These data are shown in
Figure23 where they are compared with other hand movement studies. The same

equations are also currently being used for foot movements, but with different
basic parameter values.

Some key characteristics of the anatomy movement micro-model that
should be noted here are:

(1) Movements, like the instructions that initiate them, are
executed serially for each body part.

(2) Movements are ballistic -- once initiated they cannot be
stopped nor can another action be initiated while the
movement is taking place.

(3) Movement times are fully deterministic, based on where a
body part is and where it is being moved to -- there is
no variability.

(4) If a movement cannot be performed, an interrupt will be
generated enabling the operator to select another procedure
from the active procedure list for execution.

67

40 In

Z 2
* ~- lL

IC
S I- -

eliU 2 -A
0 ". 0

U3

0 SU

ANATOMY MOVEMENT MICRO-MODEL FEATURES

O ACTIONS ARE INITIATED SERIALLY FOR EACH BODY
PART

O ACTIONS ARE BALLISTIC

I EACH BODY PART HAS A RELAXED LOCATION

* BODY PARTS RETURN TO RELAXED LOCATION AFTER A
SPECIFIED TIME

O RETURN TO THE RELAXED LOCATION CAN BE OVERRIDEN
BY SPECIFYING A GRASP LOCATION

O UNEXECUTABLE ACTIONS CAUSE SUSPENSION OF PROCEDURE

69

CONTROL MANIPULATION

- DISCRETE CONTROLS

-TIME TO MANIPULATE IS A FUNCTION
OF THE NUMBER OF SETTINGS THAT WILL
BE PASSED THROUGH

CONTINUOUS (ROTARY) CONTROLS

-TIME IS DEPENDENT ON FORCE REQUIRED
AND ANGULAR CHANGE

CONTROL MANIPULATIONS CAN BE PERFORMED IN
P ARALLEL

70

2.6 PERFORMING A CONTROL MANIPULATION

Times associated with control manipulations are highly variable

because of the diverse types of controls used in different operator stations.

Consequently, HOS allows the user to describe the characteristics of a con-

trol which are used to determine a set of equations that describe the time

associated with a control manipulation. In addition, there are a set of
"packaged" calculations that compute control manipulation times for two

basic control types -- discrete controls and continuous rotary knobs.

For discrete controls, the analyst is required to supply a time

that represents the time required to move the ccntrol through a single

setting. If a control manipulation results in a movement through several

settings, the time assigned will be the time required for a single setting

multiplied by the number of settings.

The formula for the manipulation time for a continuous rotary

control was derived by fitting a quadratic to a table of data presented by

Karger and Bayha (1966). The resultant formula is:

T = .0482 + .0050F + .0084 FA

where F is the force in pounds required to turn the control and A is the

angle through which the control is to be turned, in radians.

Unlike some of the other actions that we have discussed -- infor-

mation absorption, recall, anatomy movement, etc. -- once initiated, con-

trol manipulations can proceed in parallel with other actions. Thus, the

operator c be performing manipulations concurrently with both his right

and left hands. In fact, one of the HOPROC lanugage constructs (the
"parallel" alter) enables the analyst to specify that two or more actions

must be carried out simultaneously.

71

DESIRED LOCATION

PREFERRED LOCAT ION

RELAXED LOCATION

BODY PARTS RETURN TO A RELAXED
LOCATION WHEN NOT IN USE.

A "tGRASP"i LOCATION CAN BE ASSIGNED
THAT TEMPORARILY OVERRIDES THE
RELAXED LOCATION

Figure 24. Relaxation Logic

72

2.7 RELAXATION

The HOS relaxation micro-model interfaces wich all the other
action micro-models. Though fatigue itself is not currently modeled, HOS

does exhibit one related characteristic that a real operator tend$ to exhibit -

when body parts are not busy doing anything else, the operator will move
them to a comfortable, recaxed Loccti_*n. The analyst can override this

default location by specifying a grasp 'ocation -- a location at which

some action is expected. But after the operator has performed an action

at the grasp location, the appropriate body part will automatically return
to its relaxed location.

This logic is summnarized in Figure 24. Any action establishes
a location to which the operator must move in order to carry out the action.

After the action has been carried out (and after a specified interval of

time has elapsed) the body part will return to the grasp location (if one

has been established) or to the relaxed location, if no other actions
require that body part. After an action occurs at the grasp location, that
location is eliminated, and body parts return to the relaxed location.

2.8 OPERATOR VARIABILITY
As described above, most of the equations that govern the operator

micro-models in HOS are fully deterministic. This is consistent with two

of the premises in the HOS model -- that the operator is a trained operator
and that performance variations observed in experiments on individual

operators are largely the result of situational differences, as opposed to
differences in basic performance parameters. However, there are clearly

differences in operator performance -- both between operators and for the

same operator under different opera.tional conditions. Some of the HOS

operator parameters mentioned above enable the analyst to examine the

effects of such differences -- the short-term memory cycle time, hab strength
threshold, etc. In addition, by modifying the equations described above,

one can readily describe an operator with a different performance profile.

73

OPERATOR VARIABILITY

-- EXPRESSED THROUGH OPERATOR PARAMETERS

0 SHORT-TERM MEMORY CYCLE TIME

0 HAB STRENGTH THRESHOLDS

-- CAN BE EFFECTED THROUGH PERFORMANCE
EQUATIONS

-- "OPERATOR STATES" CONSTRUCT

74

Finally, there is a HOS construct that was a part of the original concept

of HOS that was intended to model such performance differences under

differing internal and external states. However, the overatcr sravs

(o-states) concept has not as yet been implemented because of the challenge

that has so far confronted us in modeling average performance when no

special stresses are influencing the operator.

75

79!

HOPROC

OBJECTIVE: A LANGUAGE THAT WAS

-- FLEXIBLE
-- ADAPTABLE
-- NON-SPECIFIC TO A PARTICULAR CREWSTATION

OBJECTIVE ACHIEVED WITHIN THE CONSTRAINT THAT HOPROC
HAD TO BE ABLE TO BE USED TO SLMULAZ A SPECIFIC CREW-
STATION,

EXAMPLES:

IN DECLARATIONS SECTION, NO DETAILS ABOUT DISPLAY/
CONTROL LOCATIONS OR MOST OPERATIONAL CHARACTERISTICS
ARE NEEDED.

FUNCTIONS AND PROCEDURES ARE MODULAR AND CAN BE
READILY MODIFIED FOR USE IN OTHER SIMULATIONS.

HOPROC IS FREE-FORMAT, ENGLISH/FORTRAN-LIKE, AND CAN
BE READILY UNDERSTOOD BY THOSE WITH LITTLE FAMILIARITY
WITH IT.

76

3. THE HOPROC LANGUAGE

3.1 INTRODUCTION

The HOS mission description is written in the HOPROC language.

The primary objectives in developing HOPROC have been to construct a lan-

guage that would be flexible, adaptable, easy to understand, and non-

specific to a particular crewstation, and that would, at the same time,

be able to describe the operator's crewstation and tasks in sufficient

detail that they could be accurately simulated. Attainment of these goals

was constrained by the fact that a specific crewstation must be described

in order for HOS to simulate the operator's performance within the crew-

station. But, even with this constraint, we feel that HOPROC has achieved

its major objectives.

Some of the ways in which these objectives have been met are:

(1) The actual locations of the displays and controls and
their operational characteristics are not described in
HOPROC because they are irrelevant to how the operator
uses the equipment. These data are supplied at the time
of simulation and can be readily modified in order to
simulate different crewstation configurations.

(2) The descriptions of hardware and operator procedures and
functions are highly modular so that the procedures and
functions developed for one crewstation can be readily
adapted for use in other simulations.

(3) HOPROC is a free-format, English/FORTRAN-like language
that can be readily interpreted even by those with little
familiarity with the language or the specific problem
being simulated.

77

THE HUMAN OPERATOR PROCEDURES (HOPROC) LANGUAGE

HOPROC -- AN ENGLISH/FORTRAN-LIKE LANGUAGE USED TO DESCRIBE A
CREWSTATION AND A MISSION TO HOS,

HOPROC HAS THREE MAJOR SECTIONS:

6 A TITLE DECLARATIONS SECTION

* A FUNCTIONS SECTION

9 A PROCEDURES SECTION

78

The HOPROC mission description has three major components:

(1') Title Declarations

(2) Function Definitions

(3) Procedure Definitions

The title declarations assign names to the various devices in

the operator's cewstation. In addition, they describe certain general

characteristics of the operator's displays and controls and the symbols

that may appear on the operator's display screens. The primary device

characteristics defined in the title declarations are the settings or

scale factors associated with the devices. These device characteristics

declarations enable HOS to examine the statements entered by the analyst in

the functions and procedures definitions. HOS can then determine whether

the analyst's description of the crewstation and of the operator's tasks

is complete and consistent. If the description is not complete and/or

consistent, HOS will indicate to the analyst where the crewstation and/or

task descriptions are lacking.

The heart of the mission description is the procedure definitions.

These describe the tasks that the operator must perform in order to carry
out his mission, the effects on the hardware of any actions taken by the

operator, and the independent external events that may occur during the

simulation and that may impact on the operator' s mission.

The function definitions describe both the mental calculations

that the operator must perform in order to carry out the mission tasks and

the mathematical calculations that occur during the hardware processing.

The title declarations, functions, and procedures are defined in

a HOPROC data deck consisting of ten sections, which must be entered in

the order shown in Figure 25. However, when developing a HOS simulation,

one can rarely write the code for each of the sections in order from begin-

ning to end. When working with an existing system, one will usually begin

79

SETTING SECTION

OSTATE SECTION

ARGUMENT SECTION TITLE DECLARATIONS

DISPLAY SECTION

CONTROL SECTION

SYMBOL SECTION

OPERATOR FUNCTIONS

HARDWARE FUNCTIONS FUNCTION DEFINITIONS

HARDWARE PROCEDURES 1
OPERATOR PROCEDURES PROCEDURE DEFINITIONS

Figure 25. The Sections in a HOPROC Data Deck

80

-- I,,

by identifying all the displays, controls, and symbols and defining their

characteristics in the appropriate sections. Then, the names of all the

settings can be collected into the SETTING SECTION associated with the

displays, controls, and symbols.

The final step is to define the operator functions and procedures

and the hardware functions and procedures. Usually, the operator sections

can be developed independently from the hardware sections.

With a system that is still being planned, the same general

sequence of HOPROC code development can be followed, but the progression
is less likely to be as clear cut.

Therefore, in developing a simulation, there is a tendency to
jump from section to section. As we introduce the HOPROC language to you

in the following paragraphs, there will be a similar tendency. This may

be somewhat confusing because, for example, variations on certain of the pro-

cedural statements will be introduced at different times in the discussion.
In order to minimize the potential confusion, we have indicated in Figure
26 where each of the concepts discussed in the following sections are
introduced. This index can also help you to locate the relkvant portions

of the discussions in both this manual and in the HOS Users' Guide, when-
ever you have a question about HOPROC syntax.

Since this section is only an introduction to HOPROC, all the

options available for every HOPROC statement type will not be described.

Complete details on the syntax of each HOPROC statement are presented in
Volume 11 of the HOS documentation (the HOS Users' Guide) and on the HOS
Reference Card. The purpose of this section is to provide novice HCS users
with an introduction to the HOPROC language so that these references can

be used more readily. Later sections will describe how one runs HOS and
how its output is to be interpreted -- subjects that are not covered in

any detail in Volume 11.

81

To be supplied later.

Figure 26. tIdex

82

In the following sections, some paragraphs are marked with the

letter A in parentheses (A). These paragraphs are for those wishing to

learn some of the advanced features in HOPROC. It is recommended that the

beginning student skip these sections, since they are not relevant to

a basic understanding of HOPROC or of the radar plotting simulation.

3.2 TITLE DECLARATIONS

3.2.1 Displays and Controls

The operator's equipment complement is divided into two major

functional groups -- displays and controls.* By a display we mean a device

that conveys a single item of infonrmation to the operator. A ?cntrol is a

device that the operator uses to enter a single item of information into the

system or to control a single function. These definitions obviously encompass

a wide variety of very different devices -- gauges, lights, levers,

pushbuttons, etc. When a simulation is run, HOS requires that explicit

details about the characteristics of each display and control be supplied.

But in HOPROC, every device in the operator's crewstation need only be

identified as either a display or a control.

HOPROC ignores the fact that the actual displays and controls

in the system may be integrated displays and multifunction controls. One

of the potential uses of HOS is the examination of the effects of regroup-

ing displays or controls or of changing control characteristics or the

displayed information. Therefore, every item of information that can

appear on an integrated display must be identified as a separate display.

Similarly, every function that a multifunction control can perform must

be called a separate control. When the simulation is run, display and

control locations must be specified and it is at this time the the devices

can be described as co-located.

*Symbols, which are a special type of display are described in

Sections 3.2.9 through 3.2.11.

83

DISPLAYS

* CONVEY A SINGLE tIEM OF INFORMATION

* HAVE A FIXED LOCATION

CONTROLS

* USED TO CONTROL A SINGLE FUNCTION

0 HAVE A FIXED LOCATION

84

A final characteristic of a HOS display or control is that,

disregarding the movement of pointers and such, displays and controls do

not move, relative to the operator.

The primary display used in the P-3C SS-3 radar plotting simula-

tion is the multipurpose digital display, which we shall refer to as the

RADAR-DISPLAY. The controls that will be used in the simulation are the

LOAD switch, the TRACK-BALL, and three of the momentary contact switches

on the keyset tray -- the RADAR-MODE pushbutton, the ENTER-RADAR-CONTACT

pushbutton, and the HOOK-VERIFY pushbutton (Figure 27).

The words RADAR-DISPLAY, TRACK-BALL, etc., are termed HOPRCC

za-'ab ies. Every display and control in the operator's crewstation must

be given a uni 7ze variable name. Names can be of any length, but they
must be unique within the first 20 characters. Names that consist of

several English words, such as RADAR-DISPLAY and TRACK-BALL, must either

use a hyphen to connect the individual words, or else the entire title

must be enclosed in quotation marks so that HOS can recognize that the
words comprise a single title.

3.2.2 The DISPLAY and CONTROL SECTIONs

HOPROC title declarations are organized so that all the displays

are listed consecutively, followed by all the controls. Each of these

sections is introduced by a card that identifies the section as either the

DISPLAY SECTION or the CONTROL SECTION.

3.2.3 (A) Overriding the Section Declarations

Displays can be defined within the CONTROL SECTION by entering

the keyword DISPLAY after the display title. Similarly, controls can be

defined within the DISPLAY SECTION by entering the word CONTROL after the

name of the control.

85

CSLYSEZ TTN TTN3 FO.

PAOA;-tspLAY SETNG OFF ON.

RAOAP-SCALESCL MIE

QAOA-CENrlER COOROINATES41E

CONTPOL SECTION SETTINGS OUm#y ANTENNA,
LOAO OPNAE NHz
TOACK-SALL MOMEONARY tC~
PAOAR-m4COE dNTP

"OOKvPQIY 4omENTAPY

ENTEP-QAOAR-CONTACT '4OME4ETAkY

Figure Z7. Oisspay and control sections for the radar plotting simuiation.

36

IL
.

3.2.4 Types of Displays and Controls

Displays and controls can be either discrete, 3ontinucus, or

si ona,.

Discrete devices are devices that have settinas; continuous

devices have ;a!z;es that are continuous over a defined range and that may

have a scae f-c:r associated with them. Using the example of an auto-

mobile, the gearshift for an automobile with a manual transmission is a

discrete device with settings of either neutral, reverse, first, second,

third (and, perhaps, fourth or fifth). The speedometer, on the other

hand, is a continuous device whose value can range from 0 mph up to the

maximum speed of the automobile.

Positional devices are a special type of continuous device.

Specifically, positional devices are devices that have a vector value --

i.e., that have an x and Y value simultaneously (or a range and a bearing,

magnitude and direction, etc.). An example of a positional device is the

track-ball that is used to control the position of the cursor on the

screen. Its value at any time can be represented by two numbers that

express the X and ! components (or the magnitude and direction) of the

displacement of the track-ball from an initial position.

3.2.5 Definino a Discrete Device

When a discrete display or control is being defined, the names

of any settings associated with the display or control must be identified.

This is done by following the name of the device with the word SETTINGS

and the list of settings. The list of settings is terminated by a period.

For example, in the radar plotting problem, the LOAD switch has two set-

tings, DUMMY and ANTENNA. Therefore, the full definition of the LOAD

switch is

LOAD SETTINGS DUMMY ANTENNA.

37

-AG94 353 ANALYTICS INC WILLOW GROVE PA
F/ 5/a

THE HUMAN OPERATOR SIMULATOR. VOLUME IX. HOG STUDY GUIDE.(U)

. SEP 78 M I STRIE, F A GLENN, R J WHERRY N6269-78-M-66

%JNCLASSIFIED TR-132GVOL9 NL24 fllflfflflfflfllflf
IIIIIIII

IIIIIIIIIIIIIIflfflf
IIIIIIIIIIIIIu
IIIIIIIIIIIIII
IIIIIIIIIIIIIIl
If/ilE/h/hhihE

DEVICE TYPES

DISCRETE -- HAVE SETTINGS

CONTINUOUS ~-HAVE VALUES THAT ARE
CONTINUOUS OVER A RANGE

-MAY HAVE AN ASSOCIATED
SCALE FACTOR

POSITIONAL -- HAVE VECTOR VALUES

MUST HAVE AN ASSOCIATED
SCALE FACTOR

/ 88

-7

The order in which the settings are listed is critical for controls since

HOS uses the sequence of settings to determine the amount of time that

the manipulation of a discrete control will take. Therefore, the sequence

of settings must correspond to the order in which the operator passes

through the settings when manipulating the control. For example, if the

rotary switch shown in Figure 28 had been in the SS-3 operator's crewstation,

the definition of the control would have been:

MODE-SELECTOR SETTINGS ON-LINE, ANALOG-TEST, MATRIX-TEST,
REGISTRATION-TEST, VECTOR-TEST, TYPE-
TEST, FUNCTION-GENERATOR-TEST, OFF-
LINE/ANALOG.*

For discrete displays, the order of the settings has no effect

on the course of the simulation.

3.2.6 (A) Omission of Setting Titles

The sequence in which the setting titles appear is not critical

for displays. In fact, the list of potential settings that a display

may have may be omitted using the keyword ANY after the keyword SETTINGS.

Use of the keyword ANY tells HOS that the display may have any legitimate

setting title. However, use of this option is not recommended because it

inhibits some of the error checks that HOS normally performs. Consequently,

when the ANY option is used, there is an increased chance of making an

error elsewhere in the simulation that will not be detected by HOS.

3.2.7 Momentary Contact Switches

Momentary contact switches are a special type of discrete control.

Depression of a momentary contact switch generally activates the function

performed by the control; a second depression deactivates the function.

Consequently, although a momentary contact switch is a discrete control,

*The comma is optional punctuation that can be used in any HOPROC
statement to improve readability.

89

L-

LAAU
C w 0

LU Luuj
cc L L

Lu C cLU

03 a

0~0 L6I U

4 90

it doesn't have settings, as such. The analyst can identify controls to

HOS as momentary contact switches by substituting the keyword MOMENTARY

for the keyword SETTINGS and the setting list. For example, in the radar

plotting problem, the RADAR-MODE, ENTER-RADAR-CONTACT, and HOOK-VERIFY

controls are all momentary contact switches. Consequently, they are

defined by the statements:

RADAR-MODE MOMENTARY

ENTER-RADAR-CONTACT MOMENTARY

HOOK-VERIFY-MOMENTARY

3.2.8 Defining Continuous and Positional Devices

Continuous devices are devices that can have continuous values

over a defined range. Continuous devices may, optionally, have a scale

factor associated with them. The scale factor is entered after the keyword

SCALE, which follows the device title.

For example, in the SS-3 crewstation, one of the items of informa-

tion displayed on the radar display is the area covered by the display.

Since this information is displayed in miles, it could be defined as:

RADAR-SCALE SCALE MILES

If a continuous device does not have an associated scale factor,

the word SCALE and the scale factor are omitted.

Positional devices mu t have scale factors. In order to identify

them as positional, the word COORDINATES is used, instead of the word SCALE.

For example, the TRACK-BALL is a positional device. Consequently, its

definition is:

TRACK-BALL COORDINATES INCHES

4 . 91

SYMBOLS

0 CHARACTERISTICS CONVEY d = THAN A SINGLE
ITEM OF INFORMATION

& LOCATION CAN CHANGE THROUGH TIME

0 MUST HAVE AT LEAST TWO CHARACTERISTICS

-- EXISTENCE

-- LOCATION

'42

3.2.9 Symbols

Symbols are a special type of display that differ from standard
displays in two significant ways. First, unlike standard displays, any

particular symbol may convey more than a single item of information at a

time. For example, the presence of a symbol on the RADAR-DISPLAY indicates

the existence of an object such as a ship or aircraft in the real world.

The shape of the symbol may indicate whether it is a ship or an aircraft.

The symbol's position on the screen indicates the location of the object

in the real world. If the real world object is moving, then the position

of the symbol will be moving and its rate of movement will indicate how

fast the real world object is moving. Thus, one of the characteristics
of a symbol is that it can convey more than a 8ing~e piece of information at

a time. These items of information are termed the symbol 's characteristics.
Every symbol must have at least two characteristics -- exiatence and position.

The second distinguishing feature of a symbol is that, unlike

displays and controls, the position of a symboZ, re~ative to the operator,

can change over time. For example, the position of the symbol representing
a moving ship on the RADAR-DISPLAY will change over time. As the position

of the symbol moves, so too do the locations of all the symbol's character-
istics. Displays and controls, on the other hand, must always remain fixed,
relative to the operator.

3.2.10 The SYMBOL SECTION

Symbols are entered in a separate section of the HOPROC data deck.
The symbol definitions are introduced by a SYMBOL SECTION card. The SYMBOL

plotting problem is shown in Figure 29.

3.2.11 Ordering of Symbol Characteristic Titles

of HOS generally does not care about the order in which the names

ofthe various displays, controls, and symbols in the crewstation are

defined. However, because of the fact that each symbol has several

'~93

SYMPOL SECTION
400K SETTINGS ON.

- _ 'OOK-PAOTUS SCALE INCHES
NOOK-POSITION CO00DINATES MILES
QAOA9-CONTACT 2.10

STATUS SETTINGS ENrEpED BLANK OOOKEO.
POSITION COORDINATES MILES

Figmro 29. Symb =don for *a rada ploting umnuladan.

94----

characteristics, all the characteristics for a symbol must be defined in
a group -- they cannot be scattered throughout the SYMBOL SECTION.

Every symbol has two required characteristics -- its existence

and its position. These two characteristics must be the first and last
characteristics defined for each symbol. Any number of additional symbol
characteristics may be defined between these two characteristics. The
title that represents the symbol's existence must be discrete and must

have at least one setting. The device title that represents the symbol's
position must be defined with the word COORDINATES and a scale factor.

for example, the HOOK in the radar-plotting problem is defined as follows:

HOOK SETTINGS ON.

HOOK-RADIUS SCALE INCHES

HOOK-POSITION COORDINATES MILES

Here, the title HOOK defines the existence of the hook on the display

screen.* HOOK-POSITION refers to the real-world location that corresponds
to the hook's location on the screen. Since real-world coordinates are
measured in miles, the hook's coordinates are measured in miles.

The definition of the HOOK given above includes an additional

characteristic of the HOOK that will be important in the radar plotting
problem -- its radius (HOOK-RADIUS). Whenever the operator wishes to hook
a symbol, he must manipulate the track-ball so that the symbol is encircled
by the HOOK. In order to be able to determine whether a symbol is encircled,
it is necessary to know the hook's radius. This distance is represented'4 by HOOK-RADIUS.

*Since the HOOK must always remain on the screen, its only allowable
setting is ON.

95

The HOOK-RADIUS has been defined with a scale of INCHES because
it will be compared with the physical locations of other symbols on the
screen. It could have been defined with a scale of MILES recognizing the
fact that a HOOK-RADIUS of a particular size corresponds to a specific
number of miles, depending on the scale to which the screen is set. We
chose to define the HOOK-RADIUS as we did because of the fact that the
number of miles represented by the hook-radius will vary with the display
scale, whereas the physical size of the hook (in inches) will not change
when the display is rescaled.

As another indication of the generality of HOPROC, notice that
it is not necessary to specify what the actual value of the KOOK-RADIUS
is in the HOPROC Code. The actual value need only be specified when the
simulation is run. The HOOK-RADIUS may be a small value, such that the
operator will have to position the hook very precisely, or it could be
a larger value that will not require such precise positioning. This is
a design decision that will affect the operator's performance and HOS can
be used to predict what the consequences of such decisions will be.

3.2.12 (A) Overriding Section Declarations
Displays and controls can be defined in the SYMBOL SECTION by

following the display or control title by the keyword DISPLAY or CONTROL.
Similarly, symbols can be defined in the DISPLAY or CONTROL sections by
entering the keyword SYMBOL after the titles of each of the av'mboZ's
chraicteitics.

3.2.13 Device Groups
Often there are groups of devices that logically belong together

and share similar names. For example, in a multi-engine aircraft, there
are groups of displays and controls that are identical except for the fact
that they are associated with different engines. The radar contact symbols
on the SS-3 operator's radar display also have this property.

/9

Rather than requiring the separate definition of each display,

control, or symbol in a group as a device with its own unique set of
characteristics, HOPROC provides a shorthand method to define such groups.

First, the group title is entered, e.g.,

RADAR-CONTACT

Next, the number of individual displays, controls, and/or symbols or symbol

characteristics associated with each etement in the group is entered.
For example, there are two characteristics associated with each radar con-
tact -- its STATUS and its POSITION. Consequently, the number of symbol
characteristics associated with each element in the group is two:

RADAR-CONTACT 2

This number (the number of subgroups) is followed by a number that repre-

sents the number of elements in the group. Thus, if a maximum of 10 radar
contacts can appear on the screen at any one time, the number 10 would be

entered after the number of subgroups:

RADAR CONTACT 2,10

Each of the subgroup titles is then defined as if it referred to an
individual display, control, and/or symbol:

RADAR-CONTACT 2,10

STATUS SETTINGS- ON OFF ENTERED HOOKED.

POSITION COORDINATES MILES

HOS will automatically generate titles for each subgroup and
each element in the group. The titles will be formed by concatenating

97

DEVICE GROUPS

USED TO IDENTIFY LOGICALLY GROUPED DEVICES THAT
SHARE SIMILAR NAMES,

- DURING THE SIMULATION, HOS WILL AUTOMATICALLY
REFERENCE THE DESIGNATED ELEMENT

'9

1 98

.i, l "-I

(i.e., combining) the group title with the subgroup title and with the

element numbers. For example, the titles that will be formed for the group

defined above will be:

RADAR-CONTACT-STATUS

RADAR-CONTACT-I-STATUS

RADAR-CONTACT-I0-STATUS

RADAR-CONTACT-POSITION

RADAR-CONTACT-I-POSITION

RADAR-CONTACT-i0-POSITION

During the simulation, the analyst can refer to the subgroup

titles without specifying a particular element number -- e.g.,

READ THE RADAR-CONTACT-POSITION.

HOS will automatically perform the appropriate actions on the specific

element that has been determined to be "of interest" at that particular

point in the simulation.

Note that the subgroups within the RADAR-CONTACT group are symbols

defined within a group definition. As with other symbols, the first

symbol characteristic must be discrete and the last must be positional.

In this case, no additional characteristics were defined.

3.2.14 The SETTING SECTION

As the settings associated with each display, control, or symbol

are determined, the setting titles must be collected into a SETTING SECTION.

The SETTING SECTION is entered prior to the DISPLAY, CONTROL, and SYMBOL

SECTIONS. Even though several different displays, controls, and symbols

may share the same setting title, the title need be entered only once in

'9

) 99

SETTING SECTIONANTENNA

1ANK

OUM04Y
ENTEREO
1400KEO
OFF ON

Figure 30. Setting sewoon for the radar platting simulation.

100

the SETTING SECTION. The SETTING SECTION for the SS-3 radar plotting

problem' is shown in Figure 30.

3.2.15 (A) Ordinals
Often, a display, control, or symbol will have settings that

are numeric values. For example, the VHF channel selector on a television

is a control that has the settings 2 through 13 and UHF. If such a con-

trol was being defined, the ORDINAL keyword couldbe used to eliminate the
need to list all the numeric values in the SETTING SECTION and in the list

of device settings. Using the keyword ORDINAL instead of the word SETTINGS
Tn the device definition tells HOS that the device has a sequential list
of numeric settings. For example, defining the channel selector as:

CHANNEL-SELECTOR ORDINAL 2 TO 13, UHF.

is equivalent to defining it as:

CHANNEL-SELECTOR SETTINGS 2,3,4,5,6,7,8,9,10,11,12,13, UHF.

and including the settings 2,3,4,5,6,7,8,9,10,11,12,13, and UHF in the
SETTING SECTION. In the former case, only the setting UHF needs to be
listed in the SETTING SECTION.

3.3 THE PROCEDURE DEFINITIONS

The preceding sections have described the major features of

the HOPROC title declarations. In an actual HOPROC data deck, the functions
are defined immiediately after the title declarations. However, in cr'eating
a HOS simulation, it is usually much more natural to develop the operator

4 and hardware procedures before creating the operator and hardware functions.
Therefore, we will describe the features of the procedure definitions
before discussing the functions.

101

DEFINE T"'E mf~sroN,
PERFOP"~ PAflAP-QL(T.
E'40.

OEF'E THiE PpocroupF ro RA0a44-aLO1.
--ALE TWE RAOAw-orSOLAY*

AY R4O&O-CMN~TACT-STATUS 1S MOQT ENTERED TrEN
ENTER: EgIGNATE IT AS T14E OAA-CONTACT OF irmEST;

'bOVv TME ,oow-posrTION TO TAE
RAQAP-ComTACT-POS IT ION:

nEocQgss roollVc-E0'r;
DEPRESS ETEP-QAOAQ.-CONTACT.

IF ANOT'4EQ RAflAR-CONTACT'-STATIUS IS NOT ETE4E)
TMEFN GO TO ENTER NOW,.

01EFiNE T'4E PPOCEDUQF TO ENASLE TP'.E PAOAR-OISPLAY.
TURN L.OAfl TO ANTENNA.

OEF14E THE PQOCEDURE TO ADJUST TIAE HCoK-POSITtON.
C?9ECw(REAM Tki." WOOK.POSITION.

IF IT 1% OK TH9EN ENO.
DETERMINE TH.E TQACK-OALL-POS ITION.
MOVE TKd rRAC'(-4ALL TO r 9E ;'ESULT.
IF~ THE CATE OF TH4E TRACK-PALL IS NOT 00n INCHES

TwFY 'WAIT.
GO TO CHEC'(N0w.

DEFiN4E THE PpoCeflupF To ENARLE MOO-VFWIFY.

AnJUST THE t"6aIw-poSI!I'W.

DEFINE THE PaOcEoupe rO E'4ARL.E ENTP-AOAP-CONTACT.
OEPQESS RAOAR-.#JOE.

F~w, 31. Operatr ptaciduru for tow radr ploidng simuhaton.

102

There are two parts to the procedure definitions. One part
describes the operator procedures -- the tasks to be performed by the
operator. The second part describes the har'dware procedures -- the hard-
ware consequences of the actions taken by the operator and the independent
behavior of other systems being simulated. The rules governing statement
syntax are almost identical in both sections. Therefore, in the discus-
sion to follow, the characteristics of the operator procedures will be
described first. Differences between the operator and hardware procedures
will then be described.

3.4 THE OPERATOR PROCEDURES
The operator procedures for the radar plotting problem are shown

in Figure 31. The operator procedures are introduced by an OPERATOR
PROCEDURES statement. This statement is followed by the procedures them-
selves. Each procedure is introduced by a DEFINE statement and continues
until the next DEFINE statement. Procedures can be defined in any order.

3.4.1 The DEFINE Statement
The first statement in the radar plotting operator procedures is:

DEFINE THE MISSION.

This statement is an example of a HOPROC DEFINE statement. The
DEFINE statement begins with the word DEFINE and ends with a period. In
between, there must be a procedure name, chosen by the analyst. In this
case, the name MISSION was chosen as the name of the procedure.

The use of the name MISSION as the name of this procedure has a
special significance to NOS -- specifically, it announces to HOS that this

J Is the procedure that will control the simulation. When the simulation
begins, HOS looks for a procedure named MISSION in the set of operator
procedures. If it finds one, that procedure is used as the controlling
procedure. If JIOS doesn't find a procedulre named MISSION, then it assumes

103

DEFINE STATEMENT

INTRODUCES A PROCEDURE DEFINITION,

PROCEDURES CAN BE DEFINED IN ANY ORDER.

MISSION SHOULD BE THE FIRST OPERATOR
PROCEDURE.

THE DEFINE STATEMENT IS NON-EXECUTABLE -

I.E., IT DOES NOT RESULT IN ANY OPERATOR
ACTIONS.

PERFORM STATEMENT

* PLACES THE NAMED PROCEDURE ON THE ACTIVE PROCEDURE

LI ST

* BEGINS THE EXECUTION OF THE NAMED PROCEDURE

* INHIBITS THE CONTINUATION OF THE CURRENT PROCEDURE

UNTIL THE NAMED PROCEDURE IS COMPLETED

ACCOMPLISH IS A SYNONYM FOR PERFORM.

PERFORM VERB CAN BE OMITTED.

104

that the first operator procedure is the main procedure, no matter what

its name is.

The word THE in the DEFINE statement is an example of a dis-

regarded word. These are words that are completely ignored by HOS, but

can be used to improve the readability of the procedure. The list of
disregarded words is shown in Figure 32.

3.4.2 The PERFORM Statement
The first executabZe statement in PROCEDURE MISSION is an example

.of a PERFORM statement. The PERFORM statement identifies a procedure,
defined elsewhere in the procedures section that must be executed before
the current procedure can be continued. In this case, the statement:

PERFORM RADAR-PLOT.

says that the HOS operator is not allowed to continue with the MISSION pro-

cedure until the RADAR-PLOT procedure has been completed.

The word PERFORM is actually unnecessary. The instruction would
have been understood equally well by HOS if the PERFORM had been omitted.
In that case, the instruction would have been simply:

RADAR-PLOT.

The word ACCOMPLISH can be used as a synonym for the word PERFORM

and any disregarded words can be inserted in the statement without changing
its meaning. Thus, the statements:

ACCOMPLISH RADAR-PLOT.

105

A THE

AN TO

AT ROUTINE

IN SUBROUTINE

OF PROCEDlURE

I Figure 32. Disregarded Words

ij 106

and

ACCOMPLISH THE PROCEDURE TO RADAR-PLOT.

mean exactly the same thing as:

PERFORM RADAR-PLOT.

3.4.3 (A) The START Statement
If it is not necessary for the operator to complete a procedure

before going on to the next statement, then the word START (or one of its

synonyms -- COMM4ENCE, BEGIN, INITIATE, or ACTIVATE) is used instead of the

word PERFORM. For example:

START RADAR-PLOT.

would tell HOS to put the radar-plotting procedure on the list of active

procedures and to execute it as time is available.

3.4.4 (A) The COMPLETE Statement

If a particular procedure has been placed on the active procedure

list by a START statement and at a later point it must be completely executed

before continuing with the current procedure, then the verb COMPLETE can be
used. For example, the statement:

COMPLETE RADAR-PLOT.

says that, if the RADAR-PLOT procedure is on the active procedures list,4 then it must be completed before going on to the next statement. If the
procedure is not on the active procedures list, the COMPLETE instruction

will be ignored.

107

START STATEMENT

I PLACES THE NAMED PROCEDURE ON THE ACTIVE PROCEDURE
LI ST

I SYNONYMS -- COMMENCE, BEGIN, INITIATE, ACTIVATE

COMPLETE STATEMENT

I FORCES THE NAMED PROCEDURE TO BE COMPLETED BEFORE
THE CURRENT PROCEDURE CAN BE CONTINUED

END STATEMENT

* REMOVES THE NAMED PROCEDURE FROM THE ACTIVE PROCEDURE
LI ST

* IF THERE IS NO NAMED PROCEDURE, THE CURRENT PROCEDURE
IS UNDERSTOOD

4 108

3.4.5 The END Statement

The second statement in MISSION is an example of an END state-
ment. END statements are used whenever execution of a procedure is to

be terminated. The basic format for the statement is:

END procedure-name.

If the name of the procedure is omitted, as in the example,HOS
automatically understands that the procedure to be terminated is the pro-
cedure currently being defined -- in this case MISSION. Since the END
statement is the last statement in MISSION, it could also have been omitted

entirely. HOS would have automatically known that when the RADAR-PLOT
procedure had been completed, the MISSION was over.

3.4.6 The ENABLE Procedures

The RADAR-PLOT procedure referenced in MISSION is shown in Figure
33. The first statement in this procedure is:

ENABLE THE RADAR-DISPLAY.

This statement is actually a special form of the PERFORM statement. It

says that there is a procedure named ENABLE THE RADAR-DISPLAY that is to be

executed before the RADAR-PLOT procedure can be continued. The function of
an ENABLE procedure is to activate a display or control so that the informa-
tion presented on the display can be read by the operator or, in the case

of a control, so that a control manipulation can be performed. As with a

standard PERFORM statement, the ENA3LE procedure must be executed before
the current procedure can be continued. However, if the display or control

4 named in the ENABLE statement is already active, HOS will automatically

ignore the ENABLE statement.

109

OEFTNF T 4E PQOC0OtJQE TO QAOA4-QLOT,
ENABLE T14E WAOAR-OtSPLAye
IF ANY QAA-CONTACT-STATUS IS .40T ENTE~tO THEN

LPLN Tr-Q OSTGNArE rT AS r'4F QAcO4Q-coNrACT OF t'4TEREST;
wovF Twa- ..oox-posrfom To r4E
P&ACOTACT-POS ITION 3

oepQE5s E T&p-Pa1OA,4-CONr4cT.
Tr ANOTHEP RArOA-CONTACT-STATUS IS NOT ETEE

TH4Fhi GO TO ENTEP NOJ*.

Pip,, 33. The RADAR-PLOT promdwe.

110

ENABLE PROCEDURES
It ,ACTIVAIE" DISPLAYS OR CONTROLS
It ENABLE IINFORMATION TO BE READ FROM DISPLAYS
OR CONTROL MANIPULATIONS TO BE PERFORMED

ENABLE STATEMENTS

-SPECIAL FORM OF THE PERFORM STATEMENT
-ARE IGNORED IF THE DISPLAY OR CONTROL IS ALREADY
ACTIVE

ALTER STATEMENT FOR DISCRETE CONTROLS

-- CAUSES THE OPERATOR TO CHANGE THE SETTING OF A CONTROL TO
A SPECIFIED SETTING

-- INITIATES RECALL INFORMATION ABSORPTION, ANATOMY MOVEMENT,
AND CONTROL MANIPULATION MICRO-MODELS

-- RESULTS IN THE EXECUTION OF A HARDWARE PROCEDURE ASSOCIATED
WITH THE CONTROL

SYNONYMS FOR ALTER -- TURN, CHANGE, MODIFY, VARY, MANIPULATE,
PUSH, PRESS, DEPRESS, PULL, TWIST, SET,
ENGAGE, SWITCH, PLACE, MOVE, INCREASE,
DECREASE

112

3.4.7 The ALTER Statement for Discrete Controls

The procedure to ENABLE THE RADAR-DISPLAY consists of a single

statement:

TURN LOAD TO ANTENNA.

This statement is an example of an ALTER statement for a discrete

control.* The statement tells the HOS operator to change the LOAD switch from

its current setting to the setting ANTENNA. If the LOAD switch is already in

the ANTENNA position, the HOS operator will ignore the instruction; if it

+s in the DUMMY position (as it will be at the beginning of the simulation),

the operator will move his hand to the control and switch it to the desired

setting, ANTENNA.

Changing the control's setting will have effects on the hardware

which will be described later when the hardware procedures are discussed.

For now, we will simply assume that changing the control's setting will

activate the radar display, thereby enabling the operator to read the

positions of the radar-contacts appearing on the display screen.

3.4.8 The IF ANY Statement

The next statement in RADAR-PLOT:

IF ANY RADAR-CONTACT-SYMBOL IS NOT ENTERED THEN ...

is an example of an IF statement. The general format for an IF statement is:

p IF condition THEN statement(s).

*The words TURN, CHANGE, MODIFY, VARY, MANITPULATE, PUSH, PRESS, DEPRESS,
PULL, TWIST, SET, ENGAGE, SWITCH, PLACE, MOVE, INCREASE, and DECREASE are
all synonyms for ALTER.

113

IF ANY STATEM'ENT

CAUSES THIE OPERATOR TO SEARCH THROUGH A GROUP OF
- DEVICES LOOKING FOR ONE THAT SATISFIES THE TEST

CONDITIONS.

SELECTED ELEMVENT WILL BE AUTOMATICALLY REFERENCED
WITHIN THE CURRENT PROCEDURE OR ANY ENABLE PROCEDURE
INVOKED BY THE CURRENT PROCEDURE.

114

In this case, the "condition" is:

ANY RADAR-CONTACT-SYMBOL IS NOT ENTERED

This is a complex type of condition referred to as an "IF ANY"

condition. IF ANYs are used whenever the analyst wishes to search through a

g'roup of items, looking for a specific one that satisfies the test condition.

In this particular case, the HOS operator is being told to search through

the symbols in the RADAR-CONTACT group looking for one that has not, as yet,

been entered. The HOS operator will look at each radar contact in turn,

searching for the first contact that has not been entered. If one is found,

he will perform the actions specified in the statements that follow the

keyword THEN. If one is not found, the operator will ignore the statements

in the THEN clause and continue execution at the first statement after the

period that terminates the THEN clause.

3.4.9 The DESIGNATE Statement

If a radar contact symbol is found that has not been entered,

HOS will execute the instructions in the THEN clause of the IF statement.

The first statement following the keyword THEN:

DESIGNATE IT AS THE RADAR-CONTACT OF INTEREST;

is an example of a DESIGNATE statement. This statement "designates"

the element in the RADAR-CONTACT group identified by the IF ANY as the

RADAR-CONTACT "of interest," i.e., the element in the radar contact group
t. to be used whenever any reference is made to the RADAR-CONTACT group.

The DESIGNATE statement can also be used to designate a specific

element (without the use of an IF ANY). For example, if element three in

115

DESIGNATE STATEMENT

IDENTIFIES A SE6ECTED GROUP LEMENT
AS THE ELEMENT OF INTEREST,

PUNCTUATION

PERIODS -- TERMINATE A SENTENCE

SEMI-COLONS & AND -- CONNECT CLAUSES IN THE THEN PORTION
OF AN IF STATEMENT

COMMAS -- ARE DISREGARDED

PARENTHESES CAN BE USED TO DELIMIT COMMENTS

116/

I-

the RADAR-CONTACT group was to be used whenever any of the items in the
group was referenced, the statement:

DESIGNATE 3 AS THE RADAR-CONTACT OF INTEREST.

could be used.

3.4.10 (A) Scope of an IF ANY

Within the procedure in which an IF ANY statement is used, any
references to the group being searched by the IF ANY will automatically be

understood to refer to the particular element that satisfied the IF ANY.

In addition, any ENABLE procedure begun by the procedure that uses the
IF ANY and that references the group will also be automatically assumed to be

referring to the group element chosen by the IF ANY. However, in order to
tell other procedures to use the particular element selected by the IF ANY,

the element must be "designated" by a DESIGNATE statement.

3.4.11 Punctuation

Up to this point, every procedural statement that we have

encountered has been terminated by a period. The statements in the THEN
clause, however, are terminated by a semi-colon. The semi-colon is used
when there are several statements in a THEN clause that are to be executed

as a consequence of having satisfied the IF statement. ALL statements
in a THEN clause connected by semi-colons (or by the conjunction AND) wil.l

? be executed when the IF is satisfied and skipped whenever the IF is not
satisfied.

3.4.12 The ALTER Statement for Displays and Symnbols

The second statement in the THEN clause:

MOVE THE HOOK-POSITION TO THE RADAR-CONTACT-POSITION;

is another example of an ALTER statement. In this case, though, the device

being altered, HOOK-POSITION, is a symbol characteristic rather than a

117

ALTER STATEMENT FOR DISPLAYS AND SYMBOLS

-CHANGES THE DESIRED VALUE OF A DISPLAY OR SYMBOL TO A NEW
VALUE,

-PLACES THE ADJUST PROCEDURE FOR THE DISPLAY OR SYMBOL ON
THE ACTIVE PROCEDURE LIST.

-DOES UQ1 RESULT IN AN IMMEDIATE CHANGE TO THE ACTUAL VALUE
OF THE DISPLAY OR SYMBOL.

118

control. Because HOOK-POSITION is a symbol characteristic, this ALTER

statement is significantly different from the ALTER statement (TURN LOAD

TO ANTENNA) that we encountered previously. This is because, unlike con-

trols, displays and symbols cannot be altered directLy. Rather, when the

desi red value of a display or symbol is to be changed, a procedure must

be invoked that uses a control to change the actual value of the display

or symbol.* The procedure that is invoked is termed an d4just procedure.

Figure 34 is an example of such a procedure -- the procedure to ADJUST THE

HOOK-POSITION. When the ALTER statement:

MOVE THE HOOK-POSITION TO THE RADAR-CONTACT-POSITION.

is encountered, this ADJUST procedure is placed on the active procedure

list, to be executed when time is available. ADJUST procedures placed on

the active procedure list by an ALTER statement are not executed immediately.

Consequently, the hook will not move to the position of the radar contact

immediately. Rather, it will be moved only when the operator has time

available, or when some other instruction is executed that forces the pro-

cedure to be executed.

*Any of the device parameters (DESIRED, ESTIMATED, CRITICALITY, STATE,

UPPER, LOWER, HAB-STRENGTH, TITLE, ACTUAL, DESIGNATED, RATE, TIME, XVALUE,
and YVALUE) ca be referenced in an ALTER statement, e.g.:

CHANGE THE UPPER (LIMIT) OF THE ALTIMETER TO 1000 FEET.

The current remarks apply onZy to the DESIRED value, which is the parameter
most frequently referenced in the operator procedures and the parameter
assumed by default when no parameter is specified for the device title
that immediately follows the ALTER verb.

; /

11

) ll..

OEPTNE TOE~ OPCEDUQP2 TO LOjUST T" 4OfK-POSirLON.
C"EK: E&O THE w.OOlI-POSZTIONs.

IF~ IT IS OK T-,EN FNO.
DETEO"INE TWP. T4~-3L-OrTN
4nOVE T 4 TQAC"-4ALL To r'4E RESULT.
IT 4 PATE OF THE TQACX-?3ALL IS NOT 090 INCHES

Tw4FN WAIT.
C~n TO CH~ECK MOV.

FsRm 34. The pmamdsum to ADjUST Tme HCoK.posmaN.

120

3.4.13 The ALTER Statement for Momentary Contact Switches

Momentary contact switches are discrete controls that have no
specific settings to which they can be set. Consequently, the ALTER state-

mnent for a momentary contact switch reduces to simply:

DEPRESS control.

where control is the name of the momentary contact switch. The next two

statements in the RADAR-PLOT procedure:

DEPRESS HOOK-VERIFY;

and

DEPRESS ENTER-RADAR-CONTACT.

are examples of ALTER statements for momentary contact switches.

3.4.14 Implicit Invocation of ENABLE Procedures
The statements:

DEPRESS HOOK-VERIFY;

and

DEPRESS ENTER-RADAR-CONTACT.

share an interesting characteristic -- namely, that the actions cannot be

performed because certain prerequisites hav.e not been satisfied. In par-
ticular, in order for the operator to successfully perform the HOOK-VERIFY
function, he must have first moved the hook to its desired position. ENTER-
RADAR-CONTACT, on the other hand, cannot be depressed until after the HOOK-

VERIFY function has been performed and until after the RADAR-MODE switch

has been depressed.

121

IMPLICITLY INVOKED ENABLE PROCEDURES

-EXECUTED IN ORDER TO ENABLE A CONTROL MANIPULATION TO BE
PERFORMED.

-DESCRIBE THE PREREQUISITES THAT MUST BE SATISFIED.

122

The ENABLE procedure for HOOK-VERIFY (Figure 35) ensures that

the operator will position the hook over the radar contact before depres-

sing HOOK-VERIFY. The ENABLE procedure for ENTER-RADAR-CONTACT (also shown

in Figure 35) ensures that the operator will depress the RADAR-MODE, thereby

activating the radar-matrix subfunctions, before depressing ENTER-RADAR-

CONTACT. These procedures will be automatically invoked by HOS before each

control is depressed. They are, therefore, said to be implicitly invoked

'NABLE procedures.

The statements in the two ENABLE procedures are similar to some

of the statements that have been discussed above. For example, the state-

ment:

DEPRESS RADAR-MODE.

in ENABLE ENTER-RADAR-CONTACT is another example of an ALTER stateo,!nt for

a discrete control and the statement:

ADJUST THE HOOK-POSITION.

in ENABLE HOOK-VERIFY is another special form of the PERFORM statement.

In the case of ADJUST THE HOOK-POSITION, however, the procedure to be

executed, ADJUST THE HOOK-POSITION, had already been placed on the active

procedure list by the statement:

MOVE THE HOOK-POSITION TO THE RADAR-CONTACT-POSITION.

The statement:

ADJUST THE HOOK-POSITION.

in ENABLE HOOK-VERIFY ensures that the procedure will be executed at once.

1

! 123

OFVFTkiE T'4E PQOCEDURE TO ENASLE HOOK-VERIFY.
AOJUST THE HOOK-OOSITtQ'4.

MEFTNE TM.E PPOCEOUQPE TO ENABLt ENTEP-QAUAP-COr4TACT.

X1as 5 The ENABLE mmocdugi for HOOK-VERIFY and MMTR-RAOAR-CONTACT.

4 124

3.4.15 (A) MONITOR and DISABLE Procedures

We have encountered two special types of operator procedures so

far -- ENABLE procedures and ADJUST procedures. There are two oth special

types of operator procedures -- MONITOR procedures and DISABLE procecures.

DISABLE procedures are simply the reverse of ENABLE procedures -- they

deactivate devices. However, unlike ENABLE procedures, DISABLE procedures

are not implicitly invoked by other statements.

MONITOR procedures are simply ADJUST procedures that are to be

periodically executed in order to keep a display or control at some desired

Yalue. MONITOR procedures are placed on the active procedure list by a

MONITOR statement. For example, the statement:

MONITOR THE ALTIMETER.

would place a procedure named MONITOR THE ALTIMETER (or ADJUST THE ALTIMETER)

on the active procedure list to be periodically executed until removed from

the active procedure list by an END statement.

3.4.16 The IF ANOTHER Statement

The IF ANY statement:

IF ANY RADAR-CONTACT-SYMBOL IS NOT ENTERED THEN ...

identified the first element in the RADAR-CONTACT group that satisfied the

specified condition. The IF ANOTHER statement:

IF ANOTHER RADAR-CONTACT-SYMBOL IS NOT ENTERED THEN ...

continues the search, looking for the next element in the group that satisfies

the test condition.

A
125

T-S

MONITOR PROCEDURES
-ADJUST PROCEDURES THAT ARE TO BE EXECUTED PERIODICALLY

-PLACED ON ACTIVE PROCEDURE LIST BY A MONITOR STATEMENT

DISABLE PROCEDURES
-DEACTIVATE A DISPLAY, CONTROL, OR SYMBOL, THEREBY
REQUIRING AN ENABLE PROCEDURE TO BE EXECUTED BEFORE
THE DISPLAY OR SYMBOL CAN BE READ OR THE CONTROL
MANIPULATED

-EXECUTED THROUGH THE USE OF A DISABLE STATEMENT

1 ZS

3.4.17 The GO TO Statement

The GO TO statement transfers control to another statement else-

where in the current procedure. The statement to which control is to be

transferred must be identified by a stattement 2iabeZ. The statement label

is a HOPROC variable that precedes the statement with which it is associated.

The label must be followed by a colon (:) to identify it as a label. For

examole, the GO TO statement in the RADAR-PLOT procedure:

GO TO ENTER.

transfers control to the statement identified by the label ENTER (the

DESIGNATE statement). Transfers can only be made to labeled statements in

the same procedure as the GO TO statement. GO TO statements cannot transfer

to statements in other procedures.

Usually, when a transfer to another statement occurs, HOS assumes

that a logically connected sequence of steps has been completed. Therefore,

it will give other procedures on the active procedure list an opportunity

to be executed before transferring to the labeled statement. However, often

the analyst may not want the operator to have the option of working on other

procedures. If this is the case, the analyst can say:

GO TO label NOW.

The keyword NOW tells HOS to transfer immediately to the labeled statement.

No other procedures will be allowed to be executed before the transfer to

the labeled statement has been completed.

3.4.18 The READ Statement

The first statement in the ADJUST HOOK-POSITION procedure:

READ THE HOOK-POSITION.

127

GO TO STATEMENTS

-- TRANSFERS CONTROL TO ANOTHER STATEMENT

-- TRANSFER MAY BE IMMEDIATE OR SUCH THAT
OTHER PROCEDURES MAY INTERVENE

-- STATEMENT TO WHICH CONTROL IS TO BE TRANS-
FERRED MUST BE IN THE SAME PROCEDURE

READ STATEMENT

-- FORCES OPERATOR TO READ INFORMATION

-- SYNONYMS -- CALCULATE, COMPUTE

128

is an example of a READ statement. In the statements discussed so far, it

has been assumed that the operator would automatically read or recall what-

ever information was needed, as it was needed. However, because these state-

ments allowed the operator to recall information, the data could have been

recalled incorrectly. Use.of the READ statement forces the operator to

read the specified information, rather than allowing him to rely on recall.

Thus, it ensures that the operator will use the current value of the HOOK-

POSITION, rather than a possibly incorrect remembered value in determining

whether an adjustment is necessary.

3.4.19 The IF... OK Test

The statement:

MOVE THE HOOK-POSITION TO THE RADAR-CONTACT-POSITION.

in RADAR-PLOT established the RADAR-CONTACT-POSITION as the desired value

for the HOOK-POSITION. The ADJUST procedure for the HOOK-POSITION describes

the actions that must be performed to ensure that the HOOK has been moved

to its desired position. One way to test whether the HOOK is at its desired

value is to use an "IF... OK" test:

IF THE HOOK-POSITION IS OK THEN...

The OK test compares the current estimated value of HOOK-POSITION

with upper and lower limits established around the desired value of the

HOOK-POSITION and determines whether the estimated value is within those

limits. If the estimated value is within the limits, then the test is

satisfied. If the estimated value is not within the limits, then the test

fails.*

*The OK test can also be specified as:

IF THE HOOK-POSITION IS WITHIN LIMITS THEN...

129

IF... OK STATEMENT

TESTS WHETHER A QUANTITY IS WITHIN A DEFINED
SET OF LIMITS

-LIMIT~ CAN BE ESTABLISHED BY A SET LIMITS ... STATE-
MENT 1A VARIANT FORM OF THE ALTER STATEMENT) OR IN
A FUNCTION

-- EQUIVALENT TO

IF,,, IS WITHIN LIMITS THEN...

130

3.4.20 ',A) Limits on Desired Values

The limiting range over which the estimated value can vary must

be established in the HOPROC code, either within a procedural statement
or as part of one of the operator or hardware functions, before the IF... OK
instruction is executed. Within the operator procedures, the limits can

be set by an ALTER statement, e.g., the statement:

SET LIMITS OF ALTIMETER TO 1000 FEET.

will set the upper and lower limits to 1000 feet on either side of the

current desired value of the altimeter. The upper and lower limit values

will change as the desired value of the altimeter is changed in order to
maintain the specified relationship to the desired value. For example, if

the desired value of the altimeter is 25000 feet at the time the SET LIMITS
statement is encountered, then the upper and lower limits will be 26000 and
24000 feet respectively. If the desired value of the altimeter is changed

to 30000 feet, the upper and lower limits will automatically be changed to
31000 and 29000 feet respectively, retaining the 1000 foot differential
between the desired value and each of the limiting values.

In the SS-3 radar plotting example, the HOOK-POSITION limits have
been defined within a hardware function (HOOK-LIMITS) rather than a pro-

cedural statement. This was done because the limiting values for the HOOK
are dependent upon the display factor and the size of the hook radius, in

a way that requires a potentially complex mathematical expression. Since
expressing complex mathematical functions is much easier in HOPROC function
statements than in HOPROC procedural statements, the limits were defined
in a function rather than in a procedure.

3.4.21 (A) Use of the Pronoun IT
The pronoun IT has been used in both the DESIGNATE statement

in RADAR-PLOT, and in the IF... OK statement in ADJUST THE HOOK-POSITION.

In, the DESIGNATE statement, the IT referred to the element in the RADAR-

A 131

THE COMPUTE STATEMENT

9 INVOKES A FUNCTION CALCULATION

0 THE RESULT OF THE FUNCTION CALCULATION IS
THE HOPROC VARIABLE RESULT

'1

132

CONTACT group that satisfied the IF ANY statement. In the IF... OK state-

ment, the IT referred to HOOK-POSITION. In general, the pronoun IT refers
to the first title following the introductory verb in the preceding state-
ment. Thus, in the ADJUST THE HOOK-POSITION procedure, the statement pre-

ceding the IF IT IS OK... was:

READ THE HOOK-POSITION.

Since the title that followed the verb READ was HOOK-POSITION,

this was the title that was being referred to by the pronoun IT. In the

case of the DESIGNATE statement, the IT referred to the RADAR-CONTACT-
SYMBOL that satisfied the IF ANY.

3.4.22 Invoking a Function Calculation -- The COMPUTE Statement
The next statement in the ADJUST THE HOOK-POSITION procedure:

DETERMINE THE TRACK-BALL-POSITION.

is an example of a COMPUTE statement.* The statement is similar to the

READ statement discussed previously, except for the fact that it refers to

a mental calculation that the operator must perform, rather than to an
observable display, control, or symbol in the operator's crewstation. The
mental calculation is the determination of the position to which the TRACK-
BALL is to be moved in order to move the HOOK to its desired position.
The details of this calculation will be discussed in Section 3.5.4. For
now, we shall simply assume that the computation of the function will

enable the operator to determine where the TRACK-BALL is to be moved. The
next statement:

MOVE THE TRACK-BALL TO THE RESULT.

*DETERMINE is a synonym for COMPUTE, as are CALCULATE and READ.

4 133

is an ALTER statement for a control (TRACK-BALL). This statement causes
the operator to initiate the TRACK-BALL manipulation. The keyword RESULT
refers to the result of the TRACK-BALL-POSITION calculation.

3.4.23 Parameters, Positionals, Scale Factors, and Wait Conditions
Moving the HOOK to a specific point on the screen, which may

itself be moving, is an example of a pursuit tracking problem. There are
a variety of ways in which such problems have been modeled by those study-
ing human operator performance. Through its flexible structure, HOS is
capable of accommnodating many of these models. For purposes of this dis-
cussion, however, we have chosen to let the basic structure of NOS and
some of its constructs dictate the tracking model that we would implement.
The model that we have chosen to use is a discrete model -- the operator
reads the position of the hook, determines an amount by which he must move
the track-ball in order to move the hook to its desired position, initiates
the movement, and then waits until the movement is complete before deciding
whether another movement is necessary. This final "action" -- waiting
until the movement is complete -- is expressed by the next statement:

IF THlE RATE OF THE TRACK-BALL IS NOT 0,0 INCHES THEN WAIT.

When the movement is complete, i.e., when the statement above is satisfied,
then the statement:

GO TO CHECK NOW.

is executed. This statement recycles the operator through the statements
that we have just discussed until the IF IT (i.e., the HOOK-POSITION) IS OK

statement is satisfied, at which time the ADJUST procedure is terminated.

The statement:

IF THE RATE OF THE TRACK-BALL IS NOT 0,0 INCHES THEN WAIT.

A 134

has a number of interesting features that have not been encountered in any

of the IF statements discussed so far. These features are:

0 The explicit use of parameters.

* The use of positional values.

a The use of scale factors.

* The WAIT condition.

The following sections will deal with each of these features in

detail.

3.4.24 (A) Explicit Use of Parameters
All of the statements that have been used so far have involved

the implicit use of parameters. For example, HOS has automatically under-

stood that when a device was referenced in an IF statement, its estimated

value was to be understood. Thus, the other IF statement in ADJUST THE

HOOK-POSITION could have read:

IF THE ESTIMATED VALUE OF THE HOOK-POSITION IS OK THEN END.

and the IF ANY statement in RADAR-PLOT could have been:

IF ANY ESTIMATED VALUE OF RADAR-CONTACT-STATUS IS NOT ENTERED
THEN...

The IF statement:

IF THE RATE OF THE TRACK-BALL...

differs from these other IF statements because of the fact that it expicitzy

refers to a parameter associated with the TRACK-BALL, its RATE.

i 135

1 3.

Whenever a parameter other than ESTIMATED, DESIRED, and STATE

is referenced in an operator procedures statement, it must be explicitly

specified. HOS will generaZly understand when the ESTIMATED, DESIRED, and
STATE parameters are being referenced. However, it may be necessary at

times for these parameters to be explicitly identified as well, when a

non-standard usage is desired. The general rules regarding the use of

parameters are as follows:

(1) In an IF statement, both the parameter associated with the
variable immediately following the word IF, and the param-
eter associated with the variable after the conditional
phrase are assumed to be ESTIMATED values, unless other-
wise specified.

(2) In an ALTER statement, the parameter associated with the
variable following the ALTER is assumed to be the DESIRED
value; the parameter associated with the variable after
the TO or BY is assumed to be ESTIMATED value, unless
otherwise specified.

(3) If the keywords ACTIVE or INACTIVE are used in an IF
statement or in an ALTER statement, the parameter STATE
is automatically understood.

In the example, the parameter RATE had to be explicitly specified
in order to override the ESTIMATED VALUE default parameter.

3.4.25 (A) Positional Quantities in IF and ALTER Statements

In some of the IF and ALTER statements that we have discussed, we

have referenced positional variables, e.g., HOOK-POSITION and RADAR-CONTACT-
POSITION in:

MOVE THE HOOK-POSITION TO THE RADAR-CONTACT-POSITION.
4

and HOOK-POSITION in:

IF THE HOOK-POSITION IS OK THEN END.

/

) 136

In these cases, HOS recognized the fact that the variables were

positionals and automatically separated the values of the variables into

their X and Y components. In the current IF statement:

IF THE RATE OF THE HOOK-POSITION...

we are referring to a parameter associated with the HOOK-POSITION, its rate

of change (RATE), and we wish to test the value of the RATE against a specific

numeric value. But since the HOOK-POSITION is a positional quantity, its

rate-of-change is also positional.* Therefore, we must specify two numeric

values against which the X and Y components, respectively, are to be tested.

These two values are specified as 0,0 INCHES in the test condit 4 on.

3.4.26 (A) Use of Scale Factors in Procedural Statements

When devices defined with an associated scale factor are referenced

in procedural statements, HOS will automatically check to make sure that

the scale factors are compatible and, if necessary, will apply the appro-

priate conversion factors. Thus, if HOOK-POSITION and RADAR-CONTACT-POSITION

had been defined with different (but compatible) scale factors, HOS would

automatically have performed the appropriate conversions when the statement:

MOVE HOOK-POSITION TO THE RADAR-CONTACT-POSITION.

was encountered in the RADAR-PLOT procedure. When, as in the case of the

IF statement:

IF THE RATE OF THE HOOK-POSITION IS NOT 0,0 INCHES THEN...

a numeric value is used as the test-condition, the units associated with
4

the numeric value must be specified. If the units are incompatible with

*Only some of the parameters associated with a positional quantity are
themselves positional -- these parameters are DESIRED, ESTIMATED, UPPER,
LOWER, ACTUAL, and RATE.

137

OPERATOR FUNCTIONS

DESCRIBE THE OPERATOR'S MENTAL CALCULATIONS.

USES A HYBRID VERSION OF FORTRAN.

ENABLES THE VALUES OF DISPLAYS, CONTROLS, AND
§YMBOLS T9 BE REFERENCED AND COMBINED WITH
IMPLICIT KNOWLEDGE,

1
/

~138

the units associated with the device being referenced, or if no units are
specified, HOS will issue an error message.

In the case of the RATE parameter, the numeric value should be
in "units per second," (e.g., INCHES PER SECOND) rather than simply "units,"

since the RATE parameter is a time derivative. However, the HOPROC syntax
processor does not recognize the phrase PER SECOND. Therefore, it should
not be used.

3.4.27 (A) The WAIT Clause
Rather than specifying a statement or set of statements to be

executed when the condition in an IF statement is satisfied, a WAIT clause

can be used to indicate that nothing more is to be done in the current
procedure until the condition being tested by the IF statement has been

satisfied. The WAIT clause enables the HOS operator to work on other pro-

cedures while waiting for the condition to be satisfied. HOS will periodic-
ally check the condition and will continue execution of the procedure when

the condition is satisfied.

3.5 OPERATOR FUNCTIONS

Operator functions describe the mental calculations that the
operator is to perform using the information available from his displays and

controls. In the radar plotting procedures, a single operator function,
TRACK-BALL-POSITION, is used. This function calculates the position to
which the operator wishes to move the track-ball in order to move the hook

to its DESIRED value. This calculation requires the operator to combine
an estimate of the current position of the HOOK with the desired position for

the HOOK, and with some implicit knowledge of the display/control relation-
ship between a TRACK-BALL movement and a change in the HOOK's position.

Since descriptions of calculations like this can become extremely complex,
it is not very efficient to use English-like statements to describe the

calculation. Therefore, HOPROC uses a special hybrid version of one of the

standard mathematical computer languages, FORTRAN, to express function

139

C
C ?QACX-AALL-PlSITTtOI
C
C OPTAIN OESIPED ANn ESTtmATED OO0K POSITIONhS

n$4oP(XzXVALkHE (DPtO(MK)
0OO40KYUYVaLUE (nWkOOK)
Ej.O0OrX=XVALtiE C'O()(w-p'tTrioN')
'EP'OOKY=YVAL(E ("00K-0051TttON*)

C COP4PUTE, OES14E TOACK RALL 00,;ITtUN '4ASFL) ON SCkEt.N SCALE F'ACTOR

C ANO GAINJ FACTOQ PO ?QACK(9ALL
T~mMO0EL (<TQACw(-AALL~b)
nAIN=PAPA& C t99)
X E=nOK-waXOANt~~kSAE*VLE'qC<iLO
YNW~WOYE40Y%3r/PnA-CLIYAu(TAAaLI
ITAKQL-OIIN24KYXE9NW

Figure 30. The TRACK-BALL.PWION operaor, ftmamn

I 40

calculations. This hybrid FORTRAN enables potentially complex mathematical

relationships between HOPROC variables to be expressed concisely, while

enabling the full computational power of FORTRAN to be used.

Figure 36 is an example of an operator function -- specifically,

the operator function that defines the TRACK-BALL-POSITION calculation

referenced in the operator procedure ADJUST THE HOOK-POSITION. If you are

familiar with FORTRAN, you will notice the resemblance between the HOPROC-

FORTRAN statements and standard FORTRAN. Even if you are not familiar

with FORTRAN, you will notice that the HOPROC-FORTRAN statements are very

similar to standard mathematical equations. In general, all the standard

rules of FORTRAN apply to the coding of operator functions. There are

some special characteristics of HOPROC-FORTRAN that make it different from

standard FORTRAN. These differences are explained in the following sections.

3.5.1 Definition of a Function

There may be many operator functions defined in a single simula-

tion althougn the radar plotting simulation uses only one. Each function

ends with a line of code that includes the name of the function, enclosed

in quotation marks, on the left-hand side of an equals sign. This line

of code is the onZy line in which the name of the function (in quotation

marks) can appear on the left-hand side of an equals sign.

3.5.2 Referencing Displays, Controls, and Symbols in a Function

Any HOPROC variable representing a display, control, or symbol

can be referenced in either of two ways:

(1) By enclosing the HOPROC variable name in quotation marks,
or

(2) By enclosing the HOPROC variable name in left and right
carets (<and>).

141

OPERATOR FUNCTIONS

-- DEFINED BY THE NAME OF THE FUNCTION ;N QUOTATION
MARKS ON THE LEFT SIDE OF AN EQUALS (=) SIGN

-- CAN REFERENCE DISPLAYS, CONTROLS, SYMBOLS, OR OTHER
FUNCTIONS

* ESTIMATED VALUES ARE REFERENCED BY
ENCLOSING NAME IN QUOTATION MARKS

* OTHER PARAMETERS ARE REFERENCED BY
ENCLOSING NAME IN CARETS

142

I-

Variable names that are enclosed in quotation marks reference

the ESTIMATED value of the display, control, or symbol. HOS will auto-

matically access the necessary micro-models in order to either recall or

absorb the ESTIMATED value. Thus, the two statements in the function

TRACK-BALL-POSITION:

EHOOKX = XVALUE ('HOOK-POSITION')

EHOOKY = YVALUE ('HOOK-POSITION')

both reference the ESTIMATED value of the HOOK-POSITION. The statement:

XNEW = (DHOOKX-EHOOKX)*GAIN/'RADAR-SCALE' + XVALUE
('TRACK-BALL')

references the ESTIMATED values of both RADAR-SCALE and TRACK-BALL.

As many as 10 different ESTIMATED values can be referenced in a

single function. Each ESTIMATED value can be referenced as many times as

required (or desired) within the function. Thus, the two references to

HOOK-POSITION in the statements above count as only a single reference

towards the maximum of 10 ESTIMATED values allowed per function.

Variable names must be enclosed in carets and parentheses when

any parameter other than the ESTIMATED value is to be referenced. For example,

in the calculation of the TRACK-BALL-POSITION, when the DESIRED value of

the HOOK-POSITION is to be referenced, the HOPROC variable name, HOOK-

POSITION, must be enclosed in carets and parentheses after the parameter

name, DESIRED, as in the statement:

DHOOK = DESIRED (<HOOK-POSITION>)

143

3.5.3 (A) Referencing a HOPROC Variable's Dictionary Entry Number

In certain cases, it is necessary to refer in a function to the

dician - entr-i nwnber assigned by HOS to a HOPROC variable.* The dictionary

entry number can be referenced by simply enclosing the HOPROC variable name

in carets. One must, however, be careful when referencing certain types of

HOPROC variables by their dictionary entry numbers and, in particular, when

referencing grouped devices through their dictionary entry number. When

referencing a display, control, or symbol group, subroutine REF must be

called to replace the dictionary entry number of the subgroup with the

dictionary entry number of the designated subgroup element before the

dictionary entry number is used. For example, if'we wanted to refer to the

dictionary entry number of the subgroup element selected by the IF ANY state-

ment:

IF ANY RADAR-CONTACT-STATUS IS NOT ENTRED THEN...

the following statements would be used:

ID - <RADAR-CONTACT-STATUS>

CALL REF (tO)

3.5.4 (A) The TRACK-BALL-POSITION Function

The TRACK-BALL-POSITION function, shown in Figure 36, computes

the position to which the operator is to move the TRACK-BALL based upon the

DESIRED and ESTIMATED values of the HOOK-POSITION, the current ESTIMATED

value of the TRACK-BALL, and certain of the equipment characteristics --

specifically the GAIN factor relating movement of the TRACK-BALL to movement

of the HOOK, and the current RADAR-SCALE. In order to compute the position

*Knowing the dictionary entry number enables the analyst to refer to

certain data that HOS maintains on the variable that does not correspond to
any of the standard parameters. These data include X, Y, and Z locations of
the variable, the time it was estimated, etc.

144

to which the TRACK-BALL is to be moved, the DESIRED value of the HOOK-

POSITION is first obtained and stored as the FORTRAN variable DHOOK by

the statement:

DHOOK = DESIRED (<HOOK-POSITION>)

This positional value is then decomposed into its X and Y components and

stored as the FORTRAN variables DHOOKX and DHOOKY by the statements:*

DHOOKX = XVALUE (DHOOK)

DHOOKY = XVALUE (DHOOK)

Similarly, the X and Y components of the ESTIMATED value of the HOOK-

POSITION are stored as the FORTRAN variables EHOOKX and EHOOKY by the

statements:

EHOOKX = XVALUE ('HOOK-POSITION')

EHOOKY = YVALUE ('HOOK-POSITrON')

The new desired value for the TRACK-BALL can then be computed

by taking the differences between the respective DESIRED and ESTIMATED

components, multiplying by the system gain factor and adding the resultant

values to the current TRACK-BALL position. These calculations are performed

by the two statements:

XNEW = (DHOOKX-EHOOKX)*GAIN + XVALUE ('TRACK-BALL')

YNEW = (DHOOKY-EHOOKY)*GAIN + YVALUE ('TRACK-BALL')

*XVALUE and YVALUE are FORTRAN functions that are used in HOS to obtain
the X and Y components of a positional quantity.

145

-II

The X and Y components of the new TRACK-BALL position, XNEU and YNEW, are

then stored as the values of TRACK-BALL-POSITION by the statement:*

'TRACK-BALL-POSITION' = PACKXY (XNEW,YNEW)

The system gain factor, GAIN, is a function of an input gain

factor associated with an initial RADAR-SCALE, and the current RADAR-SCALE.

The input gain factor must be divided by the current RADAR-SCALE in order

to ensure that the HOOK will move the same physical distance on the screen

for two equal movements of the TRACK-BALL, irrespective of the current

RADAR-SCALE.

The system gain factor is obtained from input information

supplied to HOS about the TRACK-BALL by the statements:

IM - MODEL (<TRACK-BALL>)

GAIN - PARA (IM,9)/'RADAR-SCALE'

These statements reference data that is supplied to HOS at execution time --

the "model" number associated with the TRACK-BALL, and one of the system

parameters (the input gain factor) associated with that model. These data

will be discussed in more detail when we describe the inputs to the HOS

simulation.

3.5.5 (A) Referencing Other Operator Functions

An operator function can reference another operator function using

the same conventions described in Section 3.5.2 for displays, controls, and

symbols. Care must be eercised, though, when a function is recursive --

i.e., when the function references a second function which in turn references

*The function PACKXY combines the X and Y components into a single
value for storage purposes.

/

14

the first. Recursive relationships between functions are permitted as Long

as :'cwcmeters other than ESTIMATE'D .'aZues are being refer'enced. Functions
that contain recursive relationships involving ESTIMATED values (i.e., the

names of the functions are in quotation marks) are not permitted.

There are several other restrictions relating to the referencing

of one function from another. These restrictions are:

(1) An operator function cannot reference another function in
such a way that the name of the second function appears in
quotation marks on the left side of an equals sign. This
restriction exists because the occurrence of a function
name in quotation marks on the left side of an equals sign
signals the end of a function definition.

(2) An operator function cannot reference itself by using the
name of the function in quotation marks in the function
definition -- this would be a recursive relationship. It
can, however, reference itself through the use of the
caret notation.

3.5.6 (A) Introductory Statements in the Operator Functions Section

The operator functions section is introduced by an OPERATOR
FUNCTIONS statement. This statement is followed by any non-executable

FORTRAN statements (COMMON, DIMENSION, EQUIVALENCE, or DATA statements)

needed by any of the functions in the section. The first two executable

statements after the non-executable statements must be:

GO TO 1000

9000 CON'iINUE

3.5.7 (A) Other Constraints on the Operator Functions

All the rules of standard FORTRAN apply to the OPERATOR FUNCTIONS

section. Several conventions should, however, be observed when coding the
OPERATOR FUNCTIONS:

147

(I) Statement numbers between 9000 and 10000 inclusive should
not be used in any OPERATOR FUNCTION.

(2) FORMAT statements should use either the H convention for
Hollerith fields or the CDC 6600-specific Hollerith
delimiters ... or 0 .. #~. The quotation mark Hollerith
delimiter, .. ,which is standard on most FORTRAN systems,
should noat be used since quotation marks are used to delimit
HOPROC variables.

(3) Though it is not strictly necessary, each function should be
self-contained. That is, a function should not contain a
GO TO statement that transfers control to a statement in
another function.

-(4) The preferred logical unit for inputting data (in a READ
statement) is logical unit 7. Logical unit 5 may also be
used (with caution), but this practice is not recommnfded.
The preferred logical unit for outputting data (via a WRITE
statement) is logical unit 6. The following logical units
should not be used for an purpose: 8,9,10,11,12,13,14.
Other logical units nay be referenced ifJ- the PROGRAM card
in HOS is changed to accommodate these logical unit numbers.

(5) Although it is possible to reference the ACTUAL values of
displays, controls, and symbols in operator functions, this
is not a recommnended practice. ACTUAL values are the pre-
cise hardware values of the displays, controls, and symbols.
This information is presumably only accessible to the
operator through the information absorption and recall
processes. Accessing the ACTUAL values through the func-
tions by-passes these processes.

3.6 HARDWARE PROCEDURES
The basic structure of the hardware procedures section is identical

to that of the operator procedures -- the section begins with the statement
HARDWARE PROCEDURES, followed by the definitions of the procedures themselves.
Each procedure begins with a DEFINE statement and continues until the next
DEFINE statement. A major difference between the two procedures sections,
however, is in the nature of the procedures themselves. In the operator
procedures section there are four special types of procedures -- ENABLE
procedures, ADJUST procedures, DISABLE procedures, and MONITOR procedures.
In the hardware section there is only one special type of procedure -

SIMULATE procedures.

148

SIMULATE PROCEDURES

-- DESCRIBES THE EFFECTS OF A SPECIFIC CONTROL MANIPULA-
TION ON OTHER DISPLAYS, CONTROLS, AND SYMBOLS,

-- CONTROLS SHOULn HAVE SIMULATE PROCEDRUES,

-- DISPLAYS AND SYNBOLS CANNOT HAVE SIMULATE PROCEDURES

-- CAN HAVE START, MIDDLE AND END ACTIONS.

/

149

DEFINE THE PROCEDURE TO SIMULATE LOAD.
START: IF THE RAOAR-OISPLAY IS OFF THEN

CHANGE LOAD TO ANTENNA;
CHANGE RAOAR-OISPLAY TO 0NI
DETERMINE TARGET-MA rRIZx
DETERMINE MOOK-LIMITS;
COMPUTE RAOAR-SWEEPI
END.

CHANGE RAOAR-OISPLAY TO OFF,
CHANGE LOAD TO DUMMY.
CHANGE RAOAR.-OISPLAY TO INACTIVE.
CHANGE EVERY RAOAR-CONTACT TO INACTIVE.

DEFINE THE PROCEDURE TO SIMULATE THE TRACX-SALL.
PIDENO: CHANGE THE TRACK-BALL TO THE NEW-BALL-POSITION.
EN(: CHANGE THE RATE OF THE TRACX-BALL TO 090 INCHES.

ENO.

DEFINE THE PROCEDURE TO SIMULATE HOOK-VERIFY.
START: DETERMINE THE HOOKED-POSITION.

ENO.

DEFINE THE PROCEDURE TO SIMULATE RAOAR-MOOE,
ENTER-PAOAR-CON TACT
USING A NAMED-CONTROL.

START: PROCEED TO THE NAMED--CONTROL.
RADAR-MODE: CHANGE ENTER-QAOAR-CONTACT TO ACTIVE.

END.
ENTER-RADAR-CONTACT: CHANGE THE HOOKED-SYMBOL TO ENTERED.

33 NON-FATAL ERROR 84 IN SUBROUTINE NEWORO
SSS HOPROC LASEL TRUNCATED TO 10 CHARACTERS

CHANGE HOOK-VErIFY TO INACTIVE.

FTqum 37. Hardwre p moclura for ft radwr pdtoing simulation.

ISOe-I

3.6.1 SIMULATE Procedures

SIMULATE procedures, like ENABLE, ADJUST, DISABLE, and MONITOR
procedures, are associated with specific devices. A SIMULATE procedure

describes the effects that a specific control manipulation will have on

other displays, controls, and symbols in the crewstation. For example,

when the SS-3 operator turns the LOAD switch to ANTENNA, various symbols

are displayed on the RADAR-OISPLAY. The procedure to SIMULATE LOAD des-

cribes what happens when the LOAD switch is changed to ANTENNA -- i.e.,

the RADAR-DISPLAY is turned ON and the RADAR-CONTACT symbols are activated,

enabling them to be read by the operator. Every control used in the simula-

t~ion 3houZd have an associated simulate procedure (though this is not
absolutely necessary). Displays and symbols do not have simulate procedures.

Simulate procedures are structured to accommodate the fact that

some control manipulations may require a considerable length of time and
that some hardware activities may occur at the beginning of the manipulation,
others in the middle, and still others at the end. Sections of a simul'.te
procedure can be labeled to indicate events that occur at the beginminy of

the manipulation; other sections can be labeled to indicate events applic-
able in the middle of a manipulation, and still other events can be labeled

as occurring at the end of the manipulation. When the manipulation begins,
only the "start" actions will be executed. During the manipulation, only
the "middle" actions will be executed, and at the end of the manipulation,

only the "end" actions will be executed.

The simulate procedures for the radar plotting problem are shown
in Figure 37. Three of the simulate procedures in Figure 37, SIMULATE HOOK-
VERIFY, SIMULATE LOAD, and SIMULATE RADAR-MODE, use only the START label.
The fourth SIMULATE procedure, SIMULATE TRACK-BALL, uses the MIDDLE* and END

labels.

*The label MIDEND indicates actions to be performed Zhoth in the middle
of a manipulation and at the end of the manipulation.

151

3.6.2 (A) Regular Hardware Procedures

There are also "Iregular" hardware procedures that are structurally

identical to regular operator procedures. Any SIMULATE procedure can invoke
a regular hardware procedure which, in turn, can invoke still other regular

hardware procedures. Regular hardware procedures, like operator procedures,
but unlike SIMULATE procedures, do not have START, MIDDLE, and ENO sections.
Typically, regular hardware procedures are executed immediately and con-
pletely. Hardware procedures can, however, be put on an active proedues

List similar to the active procedure list for operator procedures. The
active hardware procedures list differs from the active operator procedures
list in that active hardware procedures are generally executed evez-y tine
the hardware is updated. This feature is useful for procedures that, for
example, update the locations of the symbols on a display screen -- every
time the hardware is updated, the locations of all the symibols on the screen

will be updated to conform to their new real-world locations. The analyst
can also specify a frequency with which a hardware procedure is to be

executed -- for example, a hardware procedure nay only have to be executed
once every five seconds. Specifying an update frequency can help to cut

down on the amount of computer time required for the simulation, by eliminat-

ing unnecessary hardware procedure executions.

3.5.3 The Radar Plotting Hardware Procedures
The radar plotting hardware procedures will be discussed below

in the order in which these procedures are executed as determined by the
actions taken by the operator. In these discussions, we will only indicate

(1) The ways in which the hardware procedures (and functions)
differ from the operator procedures (and functions), and

(2) Any new constructs that have not already been discussed
in the preceding sections.

3.6.4 SIMULATE Procedures for Discrete Controls
The first control action that the operator performs in the HOS

radar plotting simulation is to switch the LOAD switch to the ANTENNA

17*

position. When this occurs, three hardware functions occur -- the actual

value of the LOAD switch is changed to ANTENNA, the radar-display is turned

on, and the locations of the targets in the real-world are displayed on the

radar screen. These functions are performed by the SIMULATE LOA' procedure.

The first statement in this procedure

IF THE RADAR-DISPLAY IS OFF THEN ...

distinguishes between turning the LOAD switch from DUMMY to ANTENNA and

from ANTENNA to DUMMY. When the LOAD switch is in the DUMMY position, as

it will be at the beginning of the simulation, the RADAR-DISPLAY will be

OFF. Changing the LOAD switch to the ANTENNA position turns the RADAR-

DISPLAY ON. Therefore, if the RADAR-DISPLAY is OFF at the start of the

manipulation, then the first actions to be taken are to:

CHANGE RADAR-DISPLAY TO ON;

CHANGE LOAD TO ANTENNA;

These two statements are easily recognizable as ALTER statements.

However, they differ in one important respect from the ALTER statements in

the operator procedures -- whereas ALTER statements in the operator pro-

cedures section implicitly referred to the DESIRED value of a device, ALTER

statements in the hardware procedures section implicitly refer to the ACTUAL

value of the device. Thus, these statements change the ACTUAL value of

the RADAR-DISPLAY to ON and the ACTUAL value of the LOAD switch to ANTENNA.

3.6.5 Hardware Functions

The next three statements:

DETERMINE TARGET-MATRIX;

153

C TARGFT-"ArOIX
C

READ (7*900) %TGT9
900 FORMAT (r2)

qQ1 FORMAT ('J5.O)
rTAQGFT-mdArT A' 20

-4nlOIX=X\JALUE(14IOOK-QOStTtONS)
~4OOKY=YVALUE 'p..OK-OSjTION't)
OKL2'QAOA-SCL'O*tI(4ADTUS *1

UPQER(4O,-40Os1IINl) PACKXY("OUIXX..OOKL.MOOKY.MOOKL)

rnM 300 t21.mTC-TS

YCI) = x1(I) - QT(t)*r(T(I)I'2/A.0)(STImETrl';E)/3600.0

CALL 5V'PSTN(<QAA-CE'T-,.(QAOA--CONTACT-STATUS).t.
0 <AOAP-CONTACT-STATUS).t.,$QAoAR-SCALE',iX(I).Yrc I))

STATE C0A0AP-CONTACT-STATUS,.T) I
STATE(<QA0AP-CnNTACT-PO51IotN>.r) =j

300 CONTTNUP

* PAOAR-S WEEP' 21

FSgars38. Hardwwu functions for i aft piouting samulaion.

754

DETERMINE HOOK-LIMITS;

COMPUTE RADAR-SWEEP;

are easily recognizable as COMPUTE statements. These statements initiate

the execution of the three hardware functions shown in Figure 38. The

first function, TARGET-MATRIX, reads in a set of data cards containing the

coordinates of the targets to be plotted, their speeds and headings. This

function illustrates how an operator function can be used to read in data

at execution time. This capability enables the HOS hardware and operator

procedures to be developed independently from the "real-world data" that

will obtain at the time the simulation is run. New real-world situations

can then be created and run through the model without having to rewrite

and procedures or recompile any program components.

The second function, HOOK-LIMITS, establishes limiting values for

the HOOK-POSITION. The upper limit, UPPER (<HOOK-POSITION>) is obtained

by taking the distance that converts the HOOK-RADIUS (given in inches) to

the value (in miles) represented by the HOOK-RADIUS to the X and Y com-

ponents of the current value of the HOOK-POSITION. The lower limit, LOWER

(<HOOK-POSITION>) is obtained by subtracting the same amount from the cur-

rent HOOK-POSITION. The upper and lower limits thus define a square (rather

than the circle that is the actual shape of the HOOK) within which the

hook must be in order to satisfy an IF... OK or IF... WITHIN LIMITS test.

The third function, RADAR-SWEEP, places the targets that were read

in by the TARGET-MATRIX function onto the screen as active RADAR-CONTACTS.

This function uses the subroutine SYMPSTN* to place the symbols on the

screen at their current real-world locations. The statements:

STATE (<RADAR-CONTACT-STATUS> + I) = 1

STATE (<RADAR-CONTACT-POSITION> + I) = I

*Described in more detail in the HOS Users' Guide and on the HOS

Reference Card.

155

th
set the STATE of the i RADAR-CONTACT's characteristics, STATUS and POSITION,

to I (ACTIVE), thereby enabling the operator to read these symbol characteristics.

3.6.6 (A) Altering the STATE of a Display, Control, or Symbol

If the operator had changed the LOAD switch from ANTENNA to DUMMY,

the statements:

CHANGE RADAR-OISPLAY TO OFF.

CHANGE LOAD TO DUMMY.

CHANGE RADAR-01SPLAY TO INACTIVE.

CHANGE EVERY RADAR-CONTACT TO INACTIVE.

would have been executed. The first two ALTER statements are self-explanatory,

The third statement changes the STATE parameter associated with the RADAR-

DISPLAY to INACTIVE.* This means that the operator will once again have to

execute the ENABLE procedure for RADAR-DISPLAY before he will be able to

'ead any information from the RADAR-DISPLAY. The fourth statement changes

the STATE parameter for every RADAR-CONTACT on the RADAR-DISPLAY to INACTIVE.

All the characteristics of every RADAR-CONTACT, i.e., both the STATUS and

POSITION characteristics, will be made INACTIVE. Consequently, the operator

will not be able to read any of the RADAR-CONTACT-STATUS or RADAR-CONTACT-

POSITION values without enabling the RADAR-DISPLAY.
**

3.6.7 SIMULATE Procedures for Continuous Controls

The next action that the operator performs is the manipulation of

the TRACK-BALL. The hardware consequences of a TRACK-BALL manipulation are

described by the PROCEDURE TO SIMULATE THE TRACK-BALL (Figure 39). Since tne

*The parameter STATE is understood implicitly because of the ise of

the keyword :NACTIVE.

**The RADAR-CONTACT symbols have to be inactivated independently from
the RADAR-0ISPLAY because of the fact the HOS does not recognize that the
RADAR-CONTACTs are on the RADAR-OISPLAY.

156

- DEFITNE THE PQOCEDURF TO ST 4ULATE T,4E TRACK-8ALL.

MIDFNO: CHANGE THE TOACK-BALL TO THE NEw-BALL-POSITION.

END: CHANGE THE PATE OF THE TPACK-ALL TO 0.0 INCHES.

EN0.

Figure 39. Procedure to simulate the TRACK-BALL

157

"-° l -I-

XRALL=XVALUE ('TrACir-8ALL')
YPALL=YVALUE C TQACX-9ALL')
IO8ALL=c T'ACK-iALL>
QX2XVALUEIqdE(rOeaLL))
PY=YVALUJE (ATIE(rOPALL)
T = STt~TmI'dlm9IDRALL)
XNE'MXqALL .T*QX
YNEWuY9ALL*T*QY
IM 2 w(I")L(109ALL)

X OOIKsEVALLJE('wOOK-POStTtON$ t)-~AAOA-SCALE/G'4
YwOO0KaYVA1LUE('mCOI-0OStTtON') .T"qYQIAOA-SCALE/.A'4

CALL SYV4PSTN((AD-CENTER.<OO<>),)OOKPiOSTION'9
'QAInhP-SCALE' ,1vP40O~~,YHOOK)

'NE-O&LL-OSTTON2PACKXY(XNEW.Y4EW)

Figuare 40. The NYEW-1SALU.PSIT1ON hanvrdw function.

I sa

TRACK-BALL is a continuous (positional) device, there are hardware events

that occur throughout the manipulation -- specifically the ACTUAL value of

the TRACK-BALL will change throughout the manipulation and the ACTUAL value

of the HOOK-POSITION will change concurrently to conform to the new track-

ball position. The hardware function, NEW-BALL-POSITION (Figure 40),

computes the new positions for both the TRACK-BALL and the HOOK. The

statement:

CHANGE THE TRACK-BALL TO THE NEW-BALL-POSITION.

sets the ACTUAL value of the TRACK-BALL to the result of the NEW-BALL-

POSITION calculation (the new HOOK-POSITION is set internally within the

function).

3.6.8 (A) The RATE and TIME Parameters

The NEW-BALL-POSITION function (Figure 40) references two param-

eters associated with the TRACK-BALL -- its RATE and its TIME. When the

control manipulation is begun, HOS will automatically set the RATE of the

TRACK-BALL to a value dependent on

(1) The current position of the TRACK-BALL,

(2) Where the operator will be moving the TRACK-BALL to, and

(3) The amount of time the manipulation will take.

The RATE will be assumed to be constant throughout the manipulation, after

which it will be set to zero by the statement:

CHANGE THE RATE OF THE TRACK-BALL TO 0,0 INCHES.

Throughout the manipulation, the RATE parameter is available for use in

calculations such as the calculation of the new HOOK-POSITION in NEW-BALL-

POSITION.

159

OEFINE THE pqncEoupS To SIMULATE HoOK-YEtF'r.
STAOT: OETE~mrNE THE w.OOK-POSITION.

EW).
OEFTNE THE PQOCEOUQF TO SIT'ULATE PAOAP-M4OOlEo

ENTER-QA(OAR-COPYTACT
USINGC A NA~-ONPL

STAOT: P(0CEE TO THO! NAMED-CONTROL.
P4AAR-MOOE: CHANGE EAjTEQ-QAOAbQ-CONTACT TO ACTIVE.

EN4O.
FNTSE4-QAOAQ-CONTACT: CHANG~E THE HOOKEO-SYHM8lL TO ENTEEO.

CH.ANGE H(OOK-VEPIFY TO INACTIVE.
ENO,

F~zr 41. Thew smuulm praceduru. for HOOK-VERIFY, RADAR MODE
awd ENTER-RAOAR-CONTACT.

160

The other parameter referenced in the NEW-BALL-POSITION calculation

is the TIME parameter. This parameter represents the last time (in seconds)

that the control was updated. Therefore, by subtracting this time from the

current simulation time, STIME, and multiplying by the rates of movement, the

change in the TRACK-BALL's position (and in the HOOK-POSITION) can be calculated.

3.6.9 SIMULATE Procedures for Momentary Controls

After having manipulated the TRACK-BALL so that the HOOK is in

the correct position, the operator depresses the HOOK-VERIFY pushbutton.

The SIMULATE procedure that is invoked when this control manipulation is

performed is shown in Figure 41 . This procedure simply calls the HOOKED-

POSITION function, shown in Figure 42 , which determines which symbol has

been hooked.

3.6.10 Multiple Titles in a Procedure Definition

The next two actions that the operator takes are to depress the

RADAR-MODE and the ENTER-RADAR-CONTACT switches. Since both of these switches

are associated with the radar-matrix functions on the keyset tray, a single

SIMULATE procedure has been defined for both controls. This is done by

simply listing the names of both controls in the DEFINE statement. As many

controls as desired can be defined by a single SIMULATE procedure.* However,

there is a practical limitation that results from the fact that, within the

procedure, the actions that are to occur as a result of having manipulated

one control as opposed to another must be distinguishable. Therefore, only

controls that "belong" together and/or have several functions in common

should be grouped together in a single SIMULATE procedure.

*This is also true for ENABLE, ADJUST, DISABLE, and MONITOR procedures.

161

11 2

I2sNOOKFO-5YMP.OL'
CALL 497(r)
rr (I.tAT.l0 ACTUAL(l) = ON>

200 IF (1STaPT.ST,.jOSy) rr) TO 220
CALL svusc*.(rsTAQrorosyv'.rnposorrTEP)
IF (I00..tOEIlOO() 00 TO 210
IF (T&TE(IOSYk4).,N.1I,MQ.ACTUAL(tCsymd.EQ.<(0IV,) 40 TO 210
sn1ST = OITI~(0OW*O4TDOK90P(~O)~

IF (5T-~l."N GO TO 210
0I N=SntST

101 2 oy

T02 a mIPtIS

210 rqTA~R 2 rlPC,5 *I

30 TO Pn0
220 IF dInl.EQM) r00 TO 230

ACTUAL(T01) =<zOO ,2-
N5EST(Q(OD0SYN4QL>) = 101
soisT a ACTUAL(102)
GO TO P40

230 N5ETl(<OOW(EO-SYMQOL>) = U
so1ST = I..OK-OOSITIOAI

P40 CC'NTT~k'4F
IW.OOcV-OSITTONe SrYIST

Figure 42. The HOOKED-POSITION hardre function.

162'.

3.6.11 Arguments

The argment NAMED-CONTROL is used to distinguish which control

is being used when the SIMULATE procedure is executed. Arguments are "dummy"

HOPROC variable names that can be used to serve a variety of functions.

Typically, an argument is used in place of an actual HOPROC variable in a

statement in which the name of the referenced HOPROC variable is unknown

at the time the HOPROC code is being written. For example, in the statement:

DEFINE THE PROCEDURE TO SIMULATE RADAR-MODE,

ENTER-RADAR-CONTACT USING NAMED-CONTROL.

the argument NAMED-CONTROL is mentioned in a USZVG clause. When either the

RADAR-MODE or ENTER-RADAR-CONTACT control is used in the simulation, NAMED-

CONTROL will be set so that it references the control. No matter which

control is being used, the control can therefore be referenced in the

SIMULATE procedure (or elsewhere) by referring to NAMED-CONTROL rather than

by referring to the actual name of the control.

Some of the other ways in which arguments can be used will be

described below.

3.6.12 (A) Arguments and PERFORM (START) Statements

Arguments can be used in PERFORM (or START) statements to pass

values from one procedure to another. For example, the statement:

INCREMENT-SIMULATION-TIME USING NORMAL 180. (+-) 10.

will set the arguments DISTRIBUTION-TYPE, MEAN, and STANDARD-DEVIATION in the

procedure INCREMENT-SIMULATION-TIME, to the values NORMAL, 189., and 10.,
respectively,* as a consequence of the DEFINE statement:

*The +- in parentheses is an example of a HOPROC ccime-nt. Words

enclosed in parentheses are ignored by the HOPROC processing program HAL.

163

ARGUMENTS

-DUMMY HOPROC VARIABLES

-CAN BE USED IN:

* USING CLAUSES

0 GO TO STATEMENTS

& IN OTHER PROCEDURAL STATEMENTS

164

DEFINE INCREMENT-SIMULATION-TIME USING DISTRIBUTION-TYPE,
MEAN, STANDARD-DEVIATION.

The number of values specified in the PERFORM (or START) statement must

agree with the number of arguments in the DEFINE statement for the pro-

cedure being invoked by the PERFORM (or START) statement.

3.6.13 Arguments in GO TO Statements

The first statement in the SIMULATE procedure for RADAR-MODE

and ENTER-RADAR-CONTACT is a GO TO statement that uses the argument NAMED-

CONTROL instead of a statement label. When HOS encounters this statement,

it looks for a statement label that is the same as the name of the control

being manipulated. Since the SIMULATE procedure defines the hardware actions

for both RADAR-MODE and ENTER-RADAR-CONTACT, there must be statements in

the procedure labeled with the labels RADAR-MODE and ENTER-RADAR-CONTACT.

These statements identify the sections of code in the SIMULATE procedure

that describe the hardware actions to occur when the respective controls are

depressed.

3.6.14 Arguments in ALTER Statements

The action that is taken when ENTER-RADAR-CONTACT is depressed

is to:

CHANGE HOOKED-SYMBOL TO ENTERED.

The HOPROC variable HOOKED-SYMBOL is an argument whose value is

set by the hardware function HOOKED-POSITION. The argument indicates which

symbol has been hooked by the operator. It will correspond, in this case,

to one of the elements in the RADAR-CONTACT-STATUS subgroup.

165

ARGUMENT SECTION
4OOKEO-SYP60L
NAMED-CONTROL

Figure 43. The ARGUMENT SECTION for the radar pioting simulaton.

166

3.6.15 The ARGUMENT SECTION

All the argument titles used anywhere in the operator and/or

hardware procedures and/or functions must be grouped together in the title

declarations section. The list of arguments must be introduced by an

ARGUMENT SECTION statement. Figure 43 shows the ARGUMENT SECTION used in

the radar plotting simulation.

3.7 THE HOPROC DATA DECK

The complete HOPROC data deck for the radar plotting simulation

is shown in Figures 44 through 48 . The deck consists of the settings,

a rguments, displays, controls, symbols, operator functions, hardware

functions, hardware procedures, and operator procedures that have been

described in the preceding sections. The first card in the data deck is

an optional SYSTEM card that is used to identify the deck and to label the

output that HOS will generate. The only other card(s) that may be desired

in the data deck are optional cards that control certain of the outputs

generated by the program (HAL) that process the HOPROC data deck. The

optional output controlled by these cards, the HOS DATA DECK and the NO

DATA DECK cards, will be described in Section 4.

167

SYSTEM DEMO PROGRAM -- RADAR PLOTTING
SETTING SECTION

ANTENNA
BLANK
DUMMY
ENTEREn
HOOKED
OFF ON

OSTATE SECTION
ARGUMENT SECTION

OOKED-SYMbOL
NAMED-CONTROL

DISPLAY SECTION
RADAR-OISPLAY SETTINGS OFF ON*
RAOAR-SCALE SCALE MILES
RAOAR-CENTER COOROINATES MILES

CONTROL SECTION
LOAD SETTINGS OUMMY ANTEnA.

TRACX-8ALL COORDINATES INCHES
RADAR-MODE MOMENTARY
4OOK-VERIFY MOMENTARY
ENTER-RAOAR-CONTACT MOMENTARY

SYMBOL SECTION
HOOK SETTINGS ON.
HOOK-RAOIUS SCALE INCHES
HOOK-POSITION COOROINATES MILES
RAOAR-CONTACT 2*1O

STATUS SETTINGS ENTERED BLANK HOOKED.
POSITION COORDINATES MILES

Figure 44. Tide declarations for the radar plotinq simulation.

168

OPERATOR FUNCTIONS
GO TO 10000

9000 CONTINUE
C
C TqACK-BALL-POSITION

C OBTAIN DESIRED AND ESTIM~ATED HOOK POSITIONS

DMOOK=OESIRED (<HOOK-POSITION)
OHOOKX=XVALUE (OHOOK)
OHOOKY=YVALUE (OHOOK)

- EHOOKX=XVALUE (HOOK-POSITIONO)
EHOOKY=YVALUE ('KOOK-POSITION')

C COMPUTE DESIRED TRACK BALL POSITION BASED ON SCREEN SCALE FACTOR
C AND GAIN FACTOR FOR TRACK BALL

4MODEL ((TRACK-BALL>)
GAIN=PARA(CIM*9)
XNEW=(OHOOKX-EHOOKX) *GA IN/ 'RADAR-SCALE'. XVALUE C *TRACK-BALL')
YNEW=(DHOOKY-EHOOKY) *GAIN/'RADAR-SCALE'.YVALUE('TRACK-BALL')
'TRACK-RALL-POSITIONe=PACKXY(XNE~,YNEW)

Figure 45. Operator functions for the radar plotting simulation.

MAROWARE FUNCT IONS
COMMON /TARGETS/XTc10),YT(10),RTC10),MT(1O)
OATA Pt/3,141S192651/
GO TO 10000

9000 CONTINUE
C
C TARGET-MATRIX
C

QEAD (7,900) NTGTS
900 FOOMAT (12)-

REAO (79901) (XT(IO),YT(IQ),$IT(IO),RT(IO),tOu1,NTGTS)
901 FORMAT ('4FS.0)

TARGET-MATR IX'=0
4OOKX=XVALUE (vH00Kt-POSITrONt)
HOO1KY=YVALUE C '4OOK-POSIT ION')
HOOKL3'RAOAR-SCALE'e'OOOK-AOUS/16J
UPPIER(cHOOK-POSITION~o) =ACXXCHOOKX.MOOKLMOOKY-OOKL)
LOWER(<4OOK-POSITIN,') sPACXXY CHOQKX-MOOKLM4OOIY-04tOKL)

; HOOK-(,IMITSv=MOOKL
00 300 131.NTGTS
XT(I) = T(t) *P.T(I).SIN(MT(I)PI/180.0)*(STI4E-TT'4e)/3600.0

-YT(I) a TLI) R T(t).COS(HT(I)'Plil50.).(STE-TImE)/3600.0
CALL SYMPSTN (PAOAR-CEN4TER .4RAOAR-CONTACT-STATUS>. 1v

< AOAP-CONTIACT-STATUS>.I,'gAOAR-SCALE',1,%T(I) ,YT~fl
STATE (<PAOAP-CONTACT-STATUS> r 31
STATEC<PAOAR-CONTACT-;)aSITION~ii4I) =

300 CONTINUE
TTI4E=STrmi(
'RADAR-5 WEEP9=I
X8ALL:AVALUE 'TRACX-8ALL')
Y9ALL=YVALUE c TRACK-SALL.)
I08ALL=<T'RACK-aALL>
QXzXVALUE(RATE(IOSALL))
RY2'YVALUE (RATE C IDALL))
T =ST14E-TIME(IOBALL)
XNEWdsXjALL#TOPX
YNEW=YqALL#T*PY
IM a"OELCIOSALL)
GAIN = ARA(fM*9)
XMOOK=z~VALUE'AMOOK-POStTI0N') -T'RX*'RAOAR-SCALE'/GAIN4
YOMYVALUE('HOCK-POSITI0N'.#T'QY.'RAOAR-SCALE/GA1I

CALL SY~MPSTN((RAOAR-CENTE>,MOOe(),*MOOK-POSZTZON,,
* 'A0AR-SCALEv .1 X)4O0KvYHO0()

*NE'd-8ALL-POSITION=PAC(XY(XNEWYNEW)
tOHOOK=<OK-POSITION>
OMtNSOH.OOK-RAOIUSO
rol

CALL. PE(I)
IF~ dI.GT.0) ACTUALCI) 2<N
IsTARTZNOOS. 1

Fiquie 46. Hardware functions for the radar plorbnqg simulavon.

170

200 IF CISTART.GT.NOSYM) GO TO 220
CALL SYPSCH(ISTARTIDSYMIDPOSISTEP)
IF (IDPOS.EQ.IOHOOK) GO TO 210 1
IF (STATE(IOSY4~).NE.1.OP.ACTUALLDSY4).E.OFF)) GO TO 210
SCIST = DIST(XDI'4(IOHOOK),YDIN4(IOHOOK),ZO!P4(IDHOOK),

XOIh4(IOPOS), YDI4(IOPOSJ, ZDIMCIDPOS))
IF CSDIST.GT.0P41N) GO TO 210
DMIN=SDIST
101 = 10SYt4
102 = IOPOS

210 ISTART =IDPOS - 1
GO TO 200

220 IF (IDI.EQO) GO TO 230
ACTUAL (101)=<HOOKED>
NSET1(<HOOKED-SY48OL) = [01
SOIST = ACTUAL(I02)
GO TO 240

230 NSET1(<HOO(ED-SYM8OL>) = 0
SOIST = 1HOOI(-POSITION'

240 CONTINUE
MHOOKED-POSITIONI = SDIST

Figure 46. Hardware functions for the radar plotting simulation. (cant.)

171

HAROWARE PROCEDURES
DEFINE THE PROCEDURE TO S14ULATE LOAD,

START: IF THE RAOAR-OISPLAY IS OFF THEN
CHANGE LOAD TO ANTENNA;
CHANGE RAOAR-OISPLAY TO ON%
OETERMINE TARGET-MATRIX;
DETERMINE HOOK-LIM1TS;
COMPUTE RADAR-SWEEP;
END.

CHANGE RAOAR-OISPLAY TO OFF.
CHANGE LOAD TO DUMMY.
CHANGE RAOAR-OISPLAY TO INACTIVE,
CHANGE EVERY RAOAR-CONTACT TO INACTIVE.

- DEFINE THE PROCEDURE TO S14UL.ATE THE TRACK-BALL.
MIDENO: CHANGE THE TRACK-SALL TO THE NEW-6ALL-POSITION.
ENO: CHANGE THE RATE OF THE TRACK-6ALL TO 090 INCHES*

ENO.
DEFINE THE PROCEDURE TO SIMULATE HOOK-VERIFY.

START: OETERMINE THE HOOKED-POSITION.
ENO.

DEFINE THE PROCEDURE TO SIMULATE RAOAR-MOOE,
EN"ER-RAOAR-CONTACT
USING A NAMED-CONTROL.

START: PROCEED TO THE NAMED-CONTROL.
RAOAR-MOOE: CHANGE ENTER-RAOAR-CONTACT TO ACTIVE.

END.
ENTER-RAOAR-CONTACT: CHANGE THE HOOKED-SYM8OL TO ENTERED*

CHANGE HOOK-VERIFY TO INACTIVE.
END.

Figure 47. Hardware procedum for he radar ploting simulation.

172

L-

OPERATOR PROCEDURES
DEFINE THE MISSION.

PERFORM RADAR-PLOT.

END.
DEFINE THE PROCEDURE TO RADAR-PLOT.

ENABLE THE RADAR-DISPLAY.
IF ANY RADAR-CONTACT-STATUS IS NOT ENTERED THEN

ENTER: DESIGNATE IT AS THE RADAR-CONTACT OF INTEREST;
MOVE THE HOOK-POSITION TO THE

RADAR-CONTACT-POSITION;
DEPRESS HOOK-VERIFY;
DEPRESS ENTER-RADAR-CONTACT.

IF ANOTHER RADAR-CONTACT-STATUS IS NOT ENTERED
THEN GO TO ENTER NOW.

END.

DEFINE THE PROCEDURE TO ENABLE THE RADAR-DISPLAY.
TURN LOAD TO ANTENNA,
END.

DEFINE THE PROCEDURE TO ADJUST THE HOOK-POSITION.
CHECK: READ THE HOOK-POSITION.

IF IT IS OK THEN ENO.
DETERMINE THE TRACK-BALL-POSITION.
MOVE THE TRACK-BALL TO THE RESULT.

IF THE RATE OF THE TRACK-BALL IS NOT 0,0 INCHES
THEN WAIT.

GO TO CHECK NOW.

DEFINE THE PROCEDURE TO ENABLE HOOK-VERIFY.
ADJUST T14r HOOK-POSITION.
ENO.

DEFINE THE PROCEDURE TO ENABLE ENTER-RADAR-CONTACT.
DEPRESS RADAR-MODE.

Figure 48. Operator procedures for the radar plotting simulation.

173

-Ji

job, name, core, time, PK1.

ACCOUNT, charge, password.

PACKNAM, PN 2 PACKO06.

GET, CCEXEC/UN CS0689.

GET, HOSEXEC/UN = CS0689. NAME = name 1
CCEXEC, HOSEXEC, step 1. FILE 2 file

RUN = run

CCEXEC, HOSEXEC, step 2.

7 8 9

data for step 2

789

data for step 2

67
7 9g

Figure 49. Deck Structure for a HOS Simulation

174

4. HOW TO RUN HOS

HOS is a set of three major computer programs linked to one

another by the specific problem description formulated by the analyst.
The characteristics of the problem provide the data that the first HOS pro-

gram, HAL, uses to generate portions of the second and third computer pro-

grams, HOS and HODAC. Consequently, there is a sequence of steps that the

user must follow in order properly to get from one program to the next.

At certain steps, there may be data that must be input by the analyst in

order to control the simulation and the resultant output and analyses.

Since the actual sequence of steps required to get from one program to

another is quite complex, there is an execut-' e routine that manages that

transfer of data between the programs for the user. The executive routine

enables any step to be executed with a sinqe control card on which usually

only s ne entry changes. Individual control cards can be stacked one after

another and, if any errors occur at any stage in the sequence, execution

will halt at that step. The user can then correct the error, rerun the

step, and resume processing at the next step with a minimal amount of con-

cern for the mechanics of interfacing with the computer.

4.1 THE DECK STRUCTURE FOR A HOS SIMULATION

The deck structure for a HOS simulations is shown in Figure 49

The deck consists of five control cards that are always used:

(1) A job card to identify the job and the resources required.

(2) An accou~nt card to control billing charges.

(3) A PACKNAM card that instructs the computer operator to mount
the private disc pack containing the HOS programs.

(4) Two GET cards that access the disc files that contain the
HOS executive routines.

175

-7r

03

a e
a 9 Qt

a ca

C6 N

UhU

- aU3

A - 176

These five cards are then followed by any number of step controZ cards that

invoke specific steps in the processing sequence and by the data cards for

each step. The various step names are shown in Table 1, which also

describes the function of each step, the required input data and the approximate

time and memory requirements for each step. The steps themselves are

described below in more detail.

The first card in a deck, the jcb card, assigns a name to the job

and specifies the amount of core and CPU time required by the job. The

time required for a job consisting of several steps is simply the sums of the

times required for each step, as shown in Table 1. The core required is

the maximum memory required by any individual step. Since the time and

memory requirements for some of the steps can vary according to the
complexity of the simulation, Table 1 shows approximate minimum and

maximum values or formulas that can be used to estimate the amount of time

and/or memory required. The minimum values are based on the radar plotting

problem that we are using as an example. The maximum values are based on

the full SS-3 simulation from which this problem has been derived.

One step control card is needed for each job step. The last

step control card is followed by a 78 9 card.* The 78 9 card is followed by

any data required by Step 1. This data is terminated by another 78 9 card,

which is then followed by any data for Step 2, etc. The last set of data

is terminated by a 6 7 8card.**

*A 7, 8, and 9 punched in column 1.

**Some steps may require two or more sets of data, each of which must

be separated by a 78 9 card. Some steps may not require any data, in which

case the 78 9 card for that step must be omitted.

177

_,0

106

dc'

C6A

cc

....

The flow of steps to be followed in order to run a complete simula-

tion is shown in Figure 50 . These steps are described in more detail in

the following sections.

4.2 STEP HOPROC

This step reads in the HOPROC instructions describing the operator's

tasks. It assigns a sequence number to each instruction so that it

can be readily referenced in case corrections must be made.

The data for this step, the HOPROC instructions, can be either

in the input stream or on a file already on the disc. If the data are in

the input stream, then the control card supplied should be:

CCEXEC, HOSEXEC, HOPROC. NAME = name, FILE = INPUT

where name is a one to four character identifier chosen by the analyst to

identify the simulation.* If the instructions are already on a system

file, then two control cards are necessary:

CCEXEC, HOSEXEC, HOPROC. NAME = name, FILE = filename

(GET, filename.

where fi-'enae is the name of the (indirect) file on which the instructions

are stored.

The first statement in the HOPROC data deck must be preceded by

a *DECK card. This card has the format:

*DECK deckname

*The same one to four characters must be used in all succeeding steps
associated with the simulation.

179

where deckn ze is a name supplied by the analyst that is used by the system

to label the HOPROC statements. The first card in the HOPROC data deck is
an optional SYSTEM card that identifies the simulation and is used to label

the pages of the output. The second card is an optional NO DATA DECK card.
This card tells HAL (when it is executed) to omit the output data deck

formats for HOS. These cards are followed by the title declarations sections,
functions sections, and procedures sections.

4.3 STEP HAL

This step processes the code entered in step HOPROC through the

4AL program. The control card required for this step is:

rCCEXEC, HOSEXEC, HAL. NAME - name

Data for this step is optional and consists of any final HOPROC
changes, prepared according to the rules described in Section 4.4

4.3.1 The Output from HAL

There are four major sections in the ouput listings obtained

from HAL:

(1) A listing of the HOPROC data deck and any associated error
messages identified by HAL.

(2) A listing of the dictionary of HOPROC variable names and
associated data.

(3) Estimates of the amount of core that will be needed in
steps HOS and HODAC.

(4) A list of the data cards needed for HOS.

Of these output data, the most important are the listings of the
HOPROC inputs and associated error messages. The dictionary of variable

names is frequently used to explain some types of errors. The estimates of
the HOS and HODAC core requirements and the listings of the HOS data cards
are used to prepare the data decks for succeeding steps.

180

j-

The first portion of the HAL output is a listing of all cards

in the HOPROC data deck and any associated errors. Syntax errors will

generally be printed on the line immediately following the line on which

the error occurs. However, some types of errors may not be identified

immediately by the HAL program. Such an error ususally generates an error

message that does not point clearly to the source of the error. Generally,

these types OT errors are the result of spelling mistakes or the improper

use of a keyword or a syntactic structure. Correcting the spelling mis-

take or the sentence structure will solve the prcoulem.

When a serious error occurs, HAL will usually print a message

stating that it is skipping to the next period, semi-colon, or AND in the

deck. Consequently, any words occurring between the word that generated
the error and the next period, semi-colon, or AND will not be checked for

syntactical errors.

The error messages themselves are usually self-explanatory and

are identified as being either informative, non-fatal, or fatal.* Although

they will not prevent a program from being run through HOS, informative and

non-fatal errors should be checked carefully because they generally indicate

a non-standard syntactic usage which may cause the compiled program to do

something other than what the analyst intended. Typically, what will happen

is that an informative or non-fatal error will be symptomatic of a problem

that will show up elsewhere in the simulation as a fatal error. Corrections

to the data deck are made by step HOPMOD.

*A fourth class of error -- the "compiler" error -- should never be
encountered by the general user. If, however, modifications are made to
the current statement syntax, compiler errors might be encountered while
the modifications are being debugged.

181

4.3.2 (A) Steo HOPMOD

This step enables the user to modify the HOPROC code to correct

any errors identified by HAL. The control card for this step is:

ICCEXEC, HOSEXEC, HOPMOD. NAME - name

The inputs are the corrections to the HOPROC code.

The correction set must begin with an *ID card (to identify the

correction set) in the format:

*rD ident

The *ID card is followed by the set of corrections. Two basic types of

corrections can be made to the HOPROC code -- deletions of lines (and the

optional addition of lines of code to replace the lines in error) and
insertions (to add completely new code). To delete lines of code, a *OELETE

card is used:*

*DEL.F"E deckname, seqno

where deckname.seqno is the card identifier as listed on the output from

HAL. A series of consecutive cards can be deleted by entering the identifiers

for the first and last cards to be deleted as follows:

I*DELETE deckname, seqno, deckname.seqno

The *DELETE card can be followed by any number of lines of code

to be added in place of the code being deleted,

*The aobreviation *0 can be ised in Place of *OELETE.

182

Code can be added without deleting lines by means of the *INSERT

card.* This card has the format:

I*INSERT deckname.seqno

Any cards entered after the *INSERT card will be added 2fter

the card named on the *INSERT card.

4.3.3 The HOPROC Variable Dictionary

The second portion of the HAL output (Figure 51) is a listing of

the dictionary of HOPROC variable names. The numeric data associated with

the dictionary names can generally be ignored. It is advisable, however,

to check the dictionary titles to make certain that all the variables have

been correctly defined and that there are no unusual or unexpected variable

names in the dictionary -- a statement sometimes gets typed in a way such

that it is valid HOPROC syntax, but not what was intended. Such errors

can often be spotted by scanning the dictionary.

4.3.4 HAL Estimates of HOS and HODAC Core Requirements

The next page of output from HAL (Figure 52) estimates the amount

of core needed by steps HOS and HODAC. These estimates should be entered

on the job card when these steps are run.

The HOS estimate is a rough approximation of the amount of core

needed -- it should be considered to be the minimum amount that will prob-

ably be needed. The problem with estimating the HOS core requirement is

that HAL has no way of telling how much machine code the hardware and

operator functions will generate. If the functions are much more complicated

than is usual or if they use large user-defined arrays, then HOS will require

more core than the amount estimated by HAL. A simulation with a simple set

of functions will require approximately the estimated amount.

*The abbreviation *1 can be used in place of *INSERT.

133

-A094 353 ANALYTICS INC WILLOW GROVE PA (UIFG 5/S

THE HUMAN OPERATOR SIMULATOR. VOLUME IX. HOS STUDY GUIDESERMSEP 78 M I STRIEBe F A GLENN, R J WHERRY N62269- -- 68

rJNCLASSIFIEO TR-1320-VOL-9 NL

3-*4I//I//II//I/flfflf
I//////I////I~fflffl
//IIEE//II//EE
//I/III////EI
///I////II/IIu
EEE/////EI/EEI
III///EE1//IE

I"I

wWow

4O0 OOOO 0S30 Q00ee.oQo~oQQe* 900000000O0000OOO..

Ic 4 .

:

o i

S IxII I I I i u

1a',

La.

InC

p.to

P0 Od4N 4 6
W0m -- N

04M e

0t
4c
0 .1

U, Z

2- Zl L C
or 0 c

44 P4 49 00 . 0 0

z 0 Z

185eoo o

A.

S
.4
6e
.4
S
0

g
S

0

I
a
S
.4

1
w

A 2..
4
U, -

I
S S.

~ 4

: s

em
I

a 4
45

S . . Is 9

S. S
S * . U

o 5 0 5 . S C
* a

20
U,

Li £ . Li U'

~ : : ~ : : ~ : :
* EJ * * Li ~

* 4 S 4 U, 5
E S

* 4 S

S
S:

*
* : =I ; * :5 9

*

SI: * ~

43: : :~ ~ :
~3 5: *

* ~ ~s I ~ * . ~s : a *

* ~ Li ~ * . £ - ~ * £ U' - 4 *

- - : ~ - : - -

Is Uw ~ ; : : NM~ S

g44 * :5 ~ * ~ : ~
Li * Al * * 4 Al S * N 0

- * ~ a
~ : ~ : Is Is:

4'

* 0 4

. Ut
* IA 5 9 4I I I ~
* Is * S

/4
186

The core estimates for HODAC are accurate, but the user should

note that one of the analysis programs, the Devices By Procedure Analysis

requires more core than any of the other analyses and could conceivably

require more core than is available on the computer.

4.3.5 The HOS Crewstation Data Deck Formats
The final section of output from HAL is only printed when the

HOPROC statements are error-free or if a HOS DATA DECK card is entered after
the SYSTEM card and before the first HOPROC statement.* This output lists

the data cards required to execute HOS. The format of the listings is such

that the required data can be filled in and given to a keypuncher who can
then punch the necessary data cards directly from the listings. Figures 52

through 59 are the listings of the HOS data deck formats for the radar
plotting problem. On each page, certain lines are marked with asterisks in
the left-most column. The asterisks indicate which lines are to be punched -

all the other lines simply describe the data to be entered on each card.

Furthermore, some of the cards marked with an asterisk do not necessarily
have to be used -- i.e., some of the cards are optional, and HOS will supply
default values for these data items if the cards are omitted.

4.3.5.1 The SYSTEM Card (Figure 53)
The user can enter a title on the optional SYSTEM card that will

identify the data deck and that will be used by HOS to label its output.
If the SYSTEM card is not used, HOS will label the output with the title
that was used on the HAL SYSTEM card (if a HAL SYSTEM card was used).

*Printing of the data deck after an error-free set of HOPROC instruc-
tions can be suppressed by entering a NO DATA DECK statement after the
SYSTEM card.

4 187

3.2

W2 H
Z II

aA - wk
4 - -

- 3 0
... !

£ 2188

I III

S I I

-5 1 I 1

al

- w

'I

I4 I I I

30z I I III
, ill

wo= I~z I 111I

• 4 I~iId

'- I

I 1 I III
W (I_ I Ill

. ~o I i I i ii i I

I~iI

II

I

3 , I ,I11,1

~I Illl

_ u, mu, °

I iiiiil

3 I4 11.

#. -I IlJIIi I
41 J I I 9 9 9 I I

,'I
., I I lilll

I, I, I I I I I
., 4

ii I 3O

a

I ill IN 1 1 1 iii

z

I iiis IIgg g III giii t

.17.

Ii' , II IIIII ' '

;II

z I

z

I IIIIIIIIIIIIIIII

= z I.-IHcIH HII IHH

I I I III II I I I till

I 2 1 blllllllllPll lll 11P.l ll
a I

z I I I I I I I I II I I I I I I I I I I I

IAZZ zz 7 2 z zz

-- - - -- - - -- - - - ---------------- In,

I. I4 A AI A I II4 4I I I n 4 ,0=29cOO ama I C,00 =a, Mali 000: 0ciW41=

191

II

ia

a
0

*II 4.8

SI II

(s z

CL

CC

IA

19 2 I

0 I:: v i

S 2. I$ I

- za
i3 1 U1

. I. -
, . . ., , I U'I I :-'

em c Ic I I HA I I I I P4 M -S
5 11 1159119 9911 9 m

I ~ ~ ~ ~ -t 41, lawi ilitl 111111 0.!

ol 11111i0,0 { 1 ~I1 -aq

aca

2,U

a~ G.

0

q34 al4<4

a I

In~
15 11 I20.H~ ~ wiIIII 17

IL 11 1 fl ll O11 -5
'A .4941 ui! 151 IH I-

'- -

"N I U, A n 1311

Is~iI O 1111111111111111111111 LIV-1
R~I -~i 4 ~.

III ~I193

II

UA A I I

WAA

96e

4 i i

S* *A""

* -E-- .,

Al II

Al C -!I

"-.o I I -= I"

' iI

31 I I I II

' 194

U, I 4 - II

C

It-

419

* 1 4

QC 1 1 11 11

I 21

I" 33

I I. ItiZ(Q M
3M C3 13l 2.- o

w3 I C

195

Figure 61. The design eye refernce coordinate systemn.

196

4.3.5.2 (A) The READ INPUTS Card (Figure 53)

Processing the HOS data deck is a potentially time consuming

process. Therefte,., as the data deck for a particular problem is being

processed, HOS outputs the data to a file. If the same problem is rerun

with only minor modifications, HOS can obtain the bulk of the inputs from

the data file that it created on the earlier run, thereby saving a

significant amount of computer time. When this option is used, the analyst

need only enter those inputs that are different from the earlier run. The

READ INPUTS card tells HOS to use the data from the file of processed inputs

and to expect only changes to that file.

4.3.5.3 (A) The CHECKPOINT Card (Figure 53)

The MILESTONE statement generates a CHECKPOINT file that contains

all the data HOS needs to resume processing at the MILESTONE. The CHECKPOINT

card identifies the checkpoint file number (printed in the HOS listings at

the time the MILESTONE instruction is executed) at which processing is to

resume. Crewstation data cards can be entered after the CHECKPOINT card to

modify any of the crewstation data.

4.3.5.4 (A) The METRIC/ENGLISH Card (Figure 53)

Data on display, control, and symbol locations are stored intern-

ally in HOS in inches, referenced to a coordinate system centered at the

Design Eye Point and oriented as Ehown in Figure 61.

Since data from blueprints or other sources may reference the

locations of displays, controls, and symbols to a point other than the

Design Eye Point and may use metric measurements rather than English units,

HOS allows the user to specify an alternate point from which the device

locations are to be measured. This alternate reference point is entered

on the optional METRIC/ENGLISH card, which also indicates whether a metric

to English conversion is needed.

/

j 197

For example, the card

ENGLISH 19.6 20.2 35.0

indicates that the display, control, and symbol coordinates are in inches

and are measured frm a point whose X, Y, and Z coordinates are displaced

19.6, 20.2. and 35.0 inches from the Design Eye Point. The card

METRIC 25 50 0

says that the coordinates are in centimeters, measured from a point whose

X, Y, and Z coordinates are displaced 25, 50, and I o, respectively, from

the Design Eye Point.

4.3.5.5 The Display, Control, and Symbol Sections

These display, control, and symbol sections of the HOS crewstation

data deck (Figures 54 through 56) are used to enter data on the displays,

controls, and symbols in the operator's crewstation. The most important

items of information entered in these sections are the mod*Z Zrfr e of the

display, control, or symbol and its x, Y, =d Z coodiiatese.

The model number refers to the entry in the i'fdel Specif-;iarion

Section (see Section 4.3.5.7) that corresponds to the specific piece of

equipment being described. Assume, for example, that several controls repre-

sent a specific type of toggle switch. That type of toggle switch would be

assigned a model number and would be described in the model specifications

section. All controls that are that type of toggle switch would be assigned

the same model number.

The X, Y, and Z coordinates must be given with respect to the

units and reference point identified on the METRIC/ENGLISH card. If no

METRIC/ENGLISH card was used, the X, Y, and Z coordinates must Ne in inches

from the Design Eye Point with the axes oriented as shown in Figure 61.

The other parameters on the display, control, and symbol

section cards are the initial hab strength (usually zero), the initial state

198

t
(either zero for inactive or one for active), the initial criticality (a

value between zero and one), and the initial value (or setting) of the dis-

play, control, or symbol. Advice on the establishment of the hab strength

and criticality parameter values is presented in the Appendix.

Generally, one data card must be entered for every display, con-

trol, symbol or symbol characteristic in the crewstation. The exception to

this rule is that a single data card may be used for all the elements in a

group or subgroup if every element in the group or subgroup has the same set

of initial values for symbols and symbol characteristics.

4.3.5.6 The Operator Functions Section (Figure 56)

Data for the operator functions is comparable to that for the displays,

controls, and symbols with the exception that no X, Y, and Z locations are

specified. In addition, instead of a model number, a function type must be

specified. The function type indicates whether the value of the function is

real or integer and whether the function value is extrapolatable or not.

4.3.5.7 The Model Specifications Section

The primary function of the Model Specifications Section is to

provide a generic listing of the types of displays, controls, and symbols used

in the crewstation and their operating characteristics. A sample Model

Specifications Section is shown in Figure 57. As more experimentation is

done with HOS and with specific display/control/symbol characteristics, we

expect that we will ultimately be able to develop a "standard" set of model

specifications that will contain the data needed to model any standard

display, control, or symbol accurately.

The data on the Model Specification data cards include:

0 The body part (eyes, eyes/hands, hands, or feet) needed to
absorb and/or manipulate the device.

0 The accuracy with which the device can be absorbed and/or
manipulated (i.e., the percent tolerance on absorptions
and manipulations).

e The micro-absorption time charge.
0 The size of the device.
0 The model type (real/integer, extrapolatable/not-

,. extrapolatable).
'Control specific data -- e.g., rotation limits, forces, etc.

199

nm I m II I I ~ ~ ~~~~~-I lll ... ' - 1m ..

4.3.5.8 Human Operator Specifications (Figure 58)
The next section of the data deck defines certain of the characteris-

tics of the HOS operator -- the initial (relaxed) locations of the operator's

eyes, hands, feet, shoulders, and hips, the lengths of the operator's arms
and legs, and the maximum distance from the operator's eye fixation point

at which an object will still be assumed to be "in focus."

4.3.5.9 Run Parameters (Figure 59)
This optional card assigns data values to some of the parameters

used within the HOS program.

4.3.5.10 The PRINT/SUPPRESS MESSAGES Cards (Figure 59)

These cards control how "verbose" the output from HOS will be.
Either card can be used to control which messages will be printed by the
program and which will be omitted.

4.3.5.11 The ACTIVE/INACTIVE MILESTONES Cards (Figure 59)
These cards specify which MILESTONE instructions will generate

listings of the dictionary arrays in HOS.

4.3.5.12 The TIMED MILESTONES Card (Figure 59)
This card can be used to generate printouts of the HOS dictionary

arrays at specific times during the simulation.

4.3.5.13 The TIMED SNAPSHOTS Card (Figure 59)
This card is used to suppress simulation outputs for certain time

periods and to print them for other periods.

4.3.5.14 rhe TIMED ENDPOINT Card (Figure 59)
This card will automatically terminate the simulation at the

specified simulation time.

200

4.3.5.15 The PLOT Cards (Figure 59)

The DON'T PLOT ASTERISKS, PLOT ASTERISKS, and PLOT ALL DATA

cards are used to control the data sent by HOS to the HODAC plotting routines.

4.4 STEP HALHOS

Step HALHOS is run after the HOPROC statements have been success-

fully run through HAL. It is at this step that the crewstation data des-

cribed in the preceding sections is entered. In addition, data that will be

needed by HOS at execution time* can also be entered at this time as can

any additional FORTRAN code not already in the program (e.g., user-supplied

subroutines, etc.). The control card needed to execute this step is:

CCEXEC, HOSEXEC, HALHOS. NAME = name

The first set of input data for this step must be the crewstation

data. If there is any run-time data to be supplied, this must be entered

after the 789 card that terminates the crewstation data. If there is no

run-time data, there must be an extra 789 card in the data deck, unless this

step is the last stop in the run or unless any succeeding steps do not

require any inrut data, in which case the crewstation data will be terminated

by a 678 card.
97

Following the run-time data (or the 789 card that holds its place),

the analyst can enter any additional FORTRAN code modifications that may be

needed for a simulation. If there are no FORTRA code modifications, there

must be an extra 789 card in the data deck, unless this step is the last step

in the run or unless any succeeding steps do not require any input data, in
which case the modifications will be terminated by a 678 card.

*Hardware and operator functions may need data at execution time. This
data is read by the functions from logical unit 7.

2

t 201

4.5 (A) STEP HOSMOD

Any FORTRAN errors in the hardware or operator functions will be
identified by step HALMOS. These errors can be corrected either by re-run-
ning the HOPROC code through HAL (using either HOPMOD to correct the HOPROC
code or by correcting the original HOPROC deck and starting all over again)

or by correcting the FORTRAN directly using step HOSMOD. Cor ectin anthing
more than simple FORT.R4 emz'va in thia way (i.e., making changes directly
to the HOS code or the data generated by HAL) ia 'eaamended only for those

having adikowed emperinae with hros and with Fo.&'aA programwing. The control
card needed to run step HOSMO is:

CCEXEC, HOSEXEC, HOS400. NAME - name

The data to be entered in this step are the deletions and inser-

tions to the HOS FORTRAN code or to the data generated by HOS. This correc-
tion set follows the same general rules described for the correction set
used in step HOPMO0. If step HALHOS has just been run and has identified
any FORTRAN errors in the hardware or operator functions, the following

data cards are required after the 789 card that terminates the set of
corrections:

*0 COS/HFUNC)if there were FORTRAN errors
*1 REL/HARSIM, REL/HFUNC in the hardware functions (HFUNC)

*0 COS/MFUNC 1If there were FORTRAN errors
*0 REL/KINO, REL/MFUNC lin the operator functions (MFUNC)

These cards are needed only until both HFUNC and MFUNC have been
successfully compiled owe. However, even after HFUNC and MFUNC have been

successfully compiled, an extra 789 card will be needed after the correction
set, if there are succeeding steps that have inputs.

202

Wcr.ing: If the first set of corrections to the FORTRAN code

fails to correct all the errors, then none of the changes entered will have

been made permanent -- i.e., the same changes will have to be entered

again along with any additional changes needed to make the subroutines

compile successfully.

4.6 STEP HOS

This step executes the HOS program. The following control card
is used:

SisCCEXEC,

HOSEXEC, HOS. NAME - name

Normally, no additional inputs are required.

4.6.1 The Output from HOS

Figures 62 through 64 are examples of the outputs from HOS

for the radar plotting simulation. There are three major sections to the

HOS outputs:

(1) Listings of the input arrays passed from HAL to HOS
(Figure 62).

(2) Listings of the crewstation input data and any associated
error messages (Figure 63).

(3) The simulation results (Figure 64).

The data arrays (Figure 62) passed from HAL to HOS will generally

be of little concern to the novice HOS user. Those with more HOS experience

can use these data to make simple corrections to the HOPROC instructions,

thereby avoiding the need to rerun HAL.

The crewstation data (Figure 63) consists of listings of the

data cards prepared by the analyst in accordance with the formats output

by HAL. If there are any errors on these cards, HOS will output a diagnostic

203

S1 O

4~~~~ P.-;-II

AO! I@ #A aft

:*t 0000 fteeI

ulemf -- 0000

00000

0 p00 ~000

..0.*020 000e000
* 00 000MO

0f000M U 0OM : J
2: MU .44 0to00 4

144e

:::I *00WWII

UUMI: : -l . ft
004ft Ora0 *0

W00A ~~ e00004

000-00

@0000.06 O~o-e W
00-00300. 004000~

a via 00i. 004

0000 11 .2 0410000

* 0- 000

am 0200

000000- 00 -0%0-

m* o:::x::: 0 ;
2ft4: z SO ft44%lo 4

4 2C4

z

Lai 40r L4
0 .4 NNNN O.

I" Lgn 0

Ln a 4 0 0 0 00co

in -0 M P 0 40 ilolk.C

a.~~~~u a 0 ~ 00.

U ON L"Sfl '0.04 (a

t" ON A0 0- Ic- - N. N -. t.-
CA 4Al 4c0w0 . LIZZ m ; -

u w0 a A 8 9 ul0 0 00 4

a~~0 > EC .
cca LflU UImUU Y. ca= *Y

V) 0@ 000 00w0001 9 cc c w

Uc4 9 0000m)- c4 0 a0 C

a rc a- IAM

4205

0

I A
4N

04

440 0 10

41

600 a.0

I~~9 N IVw 404N l

I" *ac-0600 u 610

404 @ W 0 ino

a ~ ~ ~ ~ -I C2ee ao~ - .@ 0

4Q Q Q W 040 N.44

w . l w44b .t 04 1 0 0 -A--:zN *a
* *. * * T6

I4-..., .9gamm r , .e ,~*. u.* Cf
* *1 ~ @0404 600 60000N a-

eee**e ~ ~ -C=! Z*.40.4 ... 4..CSf

U~~~lflN~I w04l0 a0N~u~@
c Tt" uac Ctui W,;M 44n. 4

2 ft~ttNNN =w4%S A

message immediately after each card that is in error. These errors will

usually not prevent the simulation from beginning its execution, but they

will ultimately result in problems that must be corrected in order to

obtain an error-free simulation.

The simulation output itself (Figure 64) can be quite extensive
and usually must be studied carefully in orler to ensure that both the

operator and the system are behaving as they should. If one or the other
are not behaving properly, changes to the HOPROC instructions or to the

input data will generally be required. The simulation output is subdivided

i.nto two major column headings -- one column listing the operator actions,
the other column listing hardware actions. The current simulation time is
printed at the left-hand edge of the page. Next to the simulation time

are the actions being taken by the operator. These actions are shown indented

under the procedure name that is currently being executed. Statement labels,

IF, and ALTER statement numbers are also indicated so that the progression

of actions through the procedures can be followed. In addition, when-

ever the operator absorbs or remembers the value of a device or function,

the new estimated value is shown. Thus the analyst can readily see what

the operator believes the value of a device or function to be throughout

the simulation.

In the center of the page there is a column that indicates which
body part the operator is using to accomplish the indicated action. This

column can be used to check that the appropriate body parts are being used
for the appropriate functions (i.e., that the crewstation data deck has
been properly prepared). It can also be used to estimate the loading on

each of the operator's channels.*

*However, the HODAC Channel Loading Report presents this information
in a much more concise format.

207

,1
a a - a a a -
0 0 0 6 0 - -

* . . .
* 4 . .1

o

* * * S .4 * S
* 0 6 0 6 4 0 0

WI . . 6 * * C
31 .t C 4 4
41 I AS I S
U. u
Ci 14 1 4
31 12 4 3
41 2 ~ .4 -

C a 2 - - - - - a - -

WI 4 4 4 4 4 4 4 4

- I
- I

- S
CI.. I
13 I

1' 4-s
4 4 4II

3' I
U

I
0

I-

- - - -
2 *

5' 5' *
3, S I

*
4

U..
4 * * S S

3 0 0 0 0 0 a a
* . . a .~J *

'7 C .1 '5'
I - 8 I

4 A! I
1 1

4 4
3 - -~

2 - - z
3 I 45 ~II U 50 II III II S II
2. - C

d~- ~.- -
3 4 4, -

-- -c U! C
W 3 C - .4
C - - . I 2. - .~ 7 2

U J C 0 - 4 C 0
4 4 - - .4~ U! C - -
-- -- -z -z... ~ ..~ -
ZU Z~.j -c OEE .4 .4 ~

0 04 CS Pa PCUW4 4 U ? Pa
4 U~ ..- C- 0- ~ Sa4 C C-
C ~ 2 3,- 3,-g 4 ~ .. X 3,- 3-?

S 2 aC U! U!U~U~4E ~4 P U*C
C - EU EU ~C 4C44dU UC ~0 ~C- 4

,4 W 3 0 3~JC 5' t23 01.30 4 a4 * a03, 0.2..-
- P 434~ Z~...C 2 .- 433gx'72~ UC C - -

S .. C4 - 34 34 C*:4 :~ ''~ -~
4.4 C C CI C ~. ~ 0~. 2 44 4:'a .~CP ~

34... 14 ~..a~2CCC.-C433 2124 CC'903I~
1i23...3, :.- 33 .233~-'- 22 3:2z?2--2?-1. 3: ~: - -

- SC C 3..C .. 34S32 C IC C 2 - ~.C C 43w,..
.. sCJ Z C..~ 4' WA .Cs..fl 41 14' P 41 2 ~.d' P

20. .. 3 4 42.1 -. ... ~2.-1 I.. 03 1 .. 1 4~. 1..-3 ~.2 C~C3
C 344 I 2 a' 444 4 44 -4 .44 4 44 I- ~ 4 4 T -

il
4142 4 CC C 4
4124 -~ CC CC CC

42 ~4 :7 Zj?4
131

*0004A40 *ao.rc------AS44~ca3 A!~..a M4-P..j J9~0O0C
0360-'4- ~=-C~~ 5'.~5'4,22A!~~.95'D4 3~'?3~,00o2

3...................................
C I ~ ~
- I
SI
II
-9
2.9
CI

zoc

-I

The right-hand column indicates which hardware procedures are

being executed in response to the operator's actions. It also shows

the actual values of the devices being used by the operator whenever

the operator absorbs or recalls any information.

A final type of output that can be obtained from HOS is shown

in Figure 65. This report is generated whenever an active MILESTONE or

ENDPOINT is encountered. The output lists all the major arrays that are

being used by HOS -- e.g., the X, Y, and Z locations of all displays, con-

trols, and symbols, their estimated, desired, and actual values, etc. It

also lists the current values of all operator and hardware functions, the

names of all the operator procedures currently on the active procedure list,

the locations of each of the major body parts, what each body part is

doint, and when it will complete whatever it is doing.

4.6.2 (A) Starting from a Checkpoint

When a MILESTONE instruction is executed, a checkpoint is generated.

Execution can be restarted at the chekcpoint by including a CHECKPOINT card

in the input stream. This card has the format:

CHECKPOINT checkpoint-number

Input cards can be entered after the CHECKPOINT card to modify

any of the crewstation data.

4.6.3 (A) Bypassing Crewstation Input Processing

After the crewstation inputs have been processed once (whether

or not there were errors in the inputs) the bulk of the input data processing

can be bypassed by the use of the READ INPUTS card. If there are any

corrections to the crewstation data, these can be ente-ed iriediately after

the READ INPUTS card.

/

209

0*a 4~* Q; 0O 1m*Aiz 4194 zl oft tot J

* e 4O AP O@ O 4 ft gm 'm em p0flG6

coo0 0-000 e- e eee ceeeo em.
!- t t4

4v

4.- --4 4.4 44 M;

j Ai N ,4
4 N -3 3 z v a ~ .

Ix ~ c ~ ecc~aee cc00 O

T -C '4. a -Vt tt t~itS .v.2taI I 2Z o

-C -- - -l - - - - - - - - - - - - -

a (L

C -e4

21

,a

.j- 0

m a 9AL

F- -. m = - r -

- J, x

C- z z

C 1 2
-31 .* 2

-

LA
U, a -

C-z m L a 4 I
- 4 -90w0 A

z cc C . j 4c X a PZ c
a Cc -.h b

L.; cc c - 41
44 14 .9 - * Co r W. LA cc

~~I 4 44

CC 4 .211

TO-

The READ INPUTS card and CHECKPOINT card cannot be used together

(the CHECKPOINT card has the effect of bypassing the crewstation input

processing).

4.6.4 (A) HOS Run-Time Inputs

The hardware and operator functions normally accept run-time

inputs from logical unit 7. Supplementary inputs can, however, be read

in on logical unit 5 if the user precedes them by an extra 789 card (to

separate them from the CHECKPOINT, READ INPUTS, or other crewstation data
cards that could potentially appear in the input stream at this point).

4.7 STEPS HALHOD AND HODAC

Step HALHOD uses the data supplied by HAL to prepare the HODAC
Analysis Program for execution. Step HODAC executes the HODAC program.

Since one of the HOOAC analyses, the Devices By Procedure Analysis, requires

a different version of the HODAC program than the other analyses, steps

HALHOD and HODAC have to be executed twice to obtain all the available HODAC

analyses. The following control cards are used to obtain any analysis other

than the Devices By Procedure Analysis:

ICCEXEC, HOSEXEC, HODAC. NAME a name, RUN a 0

fCCEXEC, HOSEXEC, HALHOD. NAME - name, RUN a 0

The following control cards are used to obtain the Devices By

Procedure Analysis:

FCCEXEC, HOSEXEC, HODAC. NAME a name, RUN I I

tCCEXEC, HOSEXEC, HALHOD. NAME m-name, RUN - 1

4.7.1 The Timeline Analysis (Figure 66)
The HODAC Timeline Analysis provides a summary of the primary

actions performed by the operator within a specific interval, termed a

212

0
0

I' =-i-
cc-c- -

c . 1 .. W. - 0 -U
m .0m" ;

x-.x C ZW N

1- 2
0

u2W
43tst

m 0

o Ic CL x C0 M0.C Ma 0: 0 0a.

2 4c zm zc -K zc m~ t z z
CL) 0c -

Cc 0 0 0 a~ 0 0~ 0 0 2 0~ 0
C -a (z a. zz m. at. a~ 2 c. m~ a.' a. ce 2 .

w w or 0 0.4 c- Or Or ZO 0- ZO t-l OZ 20 2 20 r 0
.J 00 42, 2 .- t 0? 42 0 42 C4 p 0 42 40 42 c4 . 0 Z2 L

9 0 C U U 0 - U U Q -c U -0
4 cc . 4 4z *L 4. =

Zm 4r 2m Zt 2 a T IL Z=ca mm 0 xa a
- I .X 0l MC,0 0 -9 w 04 0 co_ w o

LA 0 b. 1 a04 v 0 A 0 0 A 0 00 ia

a. 0 cc 0 cc A 0c 0 m '-0 cc'- c a0 3 -4 (0 c 1-t c -9 c c 9 o

41-~~~ 0 0000
0 g xg . . r . .

4~c or U - 4 - ~-
(Q c: -t c4 24 20 It- It 2-

4 .2 02 42 44 4213 2 24

snapshot interval. At the top of the page, HODAC lists the date, the name

of the simulation, and the snapshot interval. Across the page are headings

for the simulation time, the procedure currently being executed, and each

body part. Down the page are the simulation times, the primary procedure
being executed within that snapshot interval, and the primary functions

being performed by each body part during the snapshot interval. Note that

the primary function is defined as that function requiring most of the

operator's time during that snapshot interval.

4.7.2 The Channel Loading Report
- The Timeline Analysis identifies the primary actions performed

by the operator within each snapshot interval. Examining the report can

help to determine how busy the operator is at any particular time. However,

since the Timeline Analysis identifies the primary activity performed in
any snapshot interval, it does not indicate how much of that interval was
actually spent performing that activity (or any activity other than the
primary activity). This data is provided by the Channel Loading Report.

This report (Figure 67) indicates the percent of time that each body part

spends on any activity within a specific snapshot interval.

4.7.3 The Device By Body Parts Analysis

The Device Analysis by Body Parts is closely related to the Timeline

Analysis and the Channel Loading Analysis. The report (Figure 68) tabulates

statistics on the amount of time each of the operator's body parts spends
performing certain types of tasks related to each device. The name of the
device is listed in the leftmost column. Each device generates three lines
of output. The first line contains the times associated with moving to and,
if necessary, grasping the device. The second line contains the times

associated with absorbing the value of the device. The third line contains
the amounts of times associated with manipulating the device. The times
are listed underneath the column headed by the appropriate body part.*

*The "manipulation' times listed under "EYES' column is actually the
amount of time spent recalling the value of the device, since the operator's
eyes cannot be used in manipulations.

214

CL

CL

0
CO%.

La.0

-aC

0 s

44 Z
0. 0-I rVM -

No ie a4 : C 1
'a.-

Uso

a~4rp Maaaoaaa aaaooNaaa Laamaa..a 44
o * a a a.... . al . f . r . .a * . m 4f* . a**

ctI:1 nc 1 1 4 % I 4 t4 4

ct 44

I -

Ix Q

o r

a0 f

~7 4

21

T Z a* a a
*m * a -. 1. r 0tm -z a ra

a c2 I . i 4 I, *
z 3 p In 19 3l 4 v. 4 . e n7 q-V .-

x31 Z.= .1 = Z4 .ZZ .Z .; .

-~al 7

I- 3 - *021

Statistics are presented in a format that is standard for most of the

remaining HODAC reports. The format gives the total amount of time spent

on the activity, the number of times the activity was performed, the mean
value for the activity, and the standard deviation. Thus, as shown in

Figure 68 , the operator spends a total of 4.5 seconds manipulating the

ENTER-RADAR-CONTACT control with his right hand. He performs 10 manipulations

for an average manipulation time of .45 seconds with a standard deviation
of .15 seconds.

4.7.4 The Device Analysis By Usage (Figure 69)

The Device By Usage Analysis generates statistics on the amounts

of time spent by the operator in specific actions associated with each of

the devices in the crewstation. It thus provides composite statistics for

the actions presented in the devices by body part analysis and, in addition,

provides statistics on activities that may have required several body parts --

for example, enabling a display or control. The format of the report is

similar to that of the Device By Body Parts Analysis. The left-most column

identifies the device. The remaining columns list the total times, number

of times, means and standard deviations for each of the usages identified

at the TOP of the page. The meanings of each of these usages are as follows:

Moving/Grasping The time spent moving a body
part to a device and (if required)
grasping it.

Absorbing/Computing The time spent reading a device
or computing a function.

Manipulating The time spent manipulating a
control.

Recalling The time spent recalling (or
attempting to recall) the value
of a device or function.

Enabling The time spent working on the
procedure that enables the
device or function.

217

°4.•

a -

0 - %

.J ., 0 -

* N 0 * 4

4 . . . ~ o o o . o ° . ,
3 l

N •

a* m a m m s • m • • • • m

I .m-

" - ". € Z Z 1

..
4 -4

/U

218N

l ' II lln I r.... .-' "

Adjusting The time spent working on the
procedure that adjusts the
device or function.

Disabling The time spent working on the
procedure that disables the
device or function.

Stymied-Absorption The time spent outside the cur-
rent procedure as a consequence
of being unable to read the
value of a device at the time
it was needed.

Stymied-Manipulation The time spent outside the cur-
rent procedure as a consequence
of being unable to manipulate
the device when needed.

4.7.5 The Device By Procedure Analysis (Figure 70)
The Device By Procedure Analysis summnarizes the tiles spent by

the operator on the same actions as in the Device By Usage Analysis. The

difference between the two is that in the Devices By Procedures Analysis,

the actions are broken down by procedure, as well as by usage.

4.7.6 The Procedures Analysis (Figure 71)
The Procedures Analysis also presents usage statistics. However,

in this case, the data is summed over all actions performed within a pro-

cedure rather than over procedures. In addition, the Procedures Analysis

accumulates statistics on certain types of activities that only have

significance at the procedural level.

4.7.7 Label Analysis (Figure 72)
The HODAC Label Analysis provides certain summiary data for pro-

cedures and, in addition, tabulates data pertaining to certain procedure
activities. The summnary data for each procedure includes the times at which
procedures were first and last activated, the times at which they were
first and last executed, and the times at which they were first and last

removed from the active procedure list.

219

- a

* ~ 0
* 40
* .0

* Al -
Al 40

Al
* a a

- 0 -1% -
% ..

* 4 -
Al 401.Al

Ad

U
Al
0

4 00
E~l 0 0

- - 0 0

~ 0 0
A dl 4 C

* a S

4 - 'I
Al % 6

A44
3.

@44

6 0 0 0 6 0 0 0 6 0 0 6 0 6 0 0 6 0 0 0 0 0
4 0 4 0 0 0 6 0 0 3 0 0 0 0 0 6 0 0 0 0 0 0

- Al - 3 6 0 0 6 6 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0
- 0 0 - .
0 .. i -
~ 4 ~
~ 3 Ad Al Al Ad Al Ad Al Al Al Ad Al 4 4 E 'P 4 P P 4 4 8

- Al Al Al Al Al Al Al Al Al Al
I Al 4 2 *
4 ~0U
2 441 6 6 a a a a a a a a a a a a a a a a a a a
4 33~ 0- 0
343 Al - -

I W 3 3 ' ' ' % % % ' % ' '. '* % % % ' '% % C
* U 3 0 0 Al Al Al Al Ad Al Al Al Al Al 0 P 'P 'P P P P 4 'P P ~4 4 Al Al Al Al Al Al Al Al Al

4~~U - - Al 6L
* 4 4 4 0 0 0 0 0 0 0 0 0 0
0 U ~ ~ 0 0 0 0 0 6 0 0 0 0
9 0 3 3 9 3 9 3 9 3 6 0 0 0ii

Al C
0 1 P ' 'P Al Al Al Al Al Al Al Al Al

- Al Al 0 0 - 0 0 0 0 6 0 0 0 0

4 a a a a a a a a a a a a a a
3 6 Al C 0------------
Il

- - 'P Al Al Al Al Al Al Al Ad AlI - 0 * 0 3 0 0 6 0 0j Al

-I
A - - - --

- 2 4 4 4 4 4 4 4 4 4 - - 4 4 4 4 4 dl 4 4 4
U - - - - - - - 4 - 0 0 0 C 0 0 2 0 0
4 4 4 4 4 4 4 4 4 4 4 4 ~ 3 3 3 *. 3 3 0.- - 0 2
1 4 - Al ~ 4 4 4 3 6- 0. - Al A! 4 dl 4 * C
C

- U - - - - - - - - - - - - - - - ---------------------------
IJWUUUW~UUU U U

*
- A O0ZZ3ZZZZZZZZ* 122222222
-. - 234C22GC00002220
* OI3UUU UUUUUUUUUUUUUUUUUU

'1 0 Al
U 3 3 £ 3 £ 3 3 3 3 3 3 3 3 £ £ 3 3 3 3 3 3 3 3 3 3

6 - 4 4 3 Al 4
0 300 200 C 000002002 0 20 0 000 0 00

220

A

In
N

t N t

U.'.

4c4

IjI

a
c

LU '0

221 a

S

* 0
o a

u~ . g~
3 0 3 0
IM 0 ~

2 ii 2 6
- ~ 0

o 0-

2 2'.- ~ 0

(A
3 3
w w

2 2

o 0 0 0
(J 0 J C
2 * 2
~ a ~ N

Lb
a u 0 N

0
3 3 -
LAd Ad

Ad
2 2

* 0
(9 0 -- ~* C

* . ~p.e.
C *0~O ~ 0

C C
p. p.
91 Ad - 969*91 -

0 0 0 0 0 0 C
L.J0 L.J0 - L.i0 LAdO - L~0 wO 0

In dJO LAd0 16 1.dQ -WO I ~ PW0 U
~ ~. 46W 4~(.J .* - 4~~Ad 414 4'~ 4~J -
2 ~ ~ T
- 4 6J0 W0 - U0 .~0 - -'(.JC -(JO
- 2 6bdl 'AdZ - %. -LAJZ (AdZ - % ~-u.aZ -wI
~ I~ I

($lAIn IflU~ifl U In'A ui'JiUI InUIU1 U In.fl
~ 4 ~44 444 444 444 444 444
4 ~ .. J~J ~ 4 .. I~.j ~ 4 ~ 0o
4 (.1
3 4 0 0

0 0 0 N
* 0
B X 00P~ 00(9 00.t *JJi ,t4~fl ~LA1~ 1%

00~ CC~ CON l,~.t .D~t.t Np.(j'
2~ * . . C . C * C . . -
4 p. N - - --.. (9 (9(94 0
3 Ad N C

I-, (9 C IL
0
2
3

C 0 0 0 0 0 0
o LAJO wO - N - 6 AdO AdO
I ~wo -AdO - -wO C-AdO C C-AdO w0
lAd 4Ad dC-Ad Ad 4I.J EC-.J LA.' - dC-Ad

~ I ~ I
-U0 .C(JO - % -(JO -(JO - % *UO U0
C-AdZ P-wi - ~ AdX Ad1 - 0. -(~2. P-~7
(J4Ad (J'4Ad (9 UdAd (.C4(~ 0 C.J~Ad (J4Ad
4w! 4Ad2 ~ * 41Ad2 4w3 ~ * 4w? 4w2

4 4
NC-C- - . - C-

*j.U.u- *JCfU~ 0 U'LAU ~u~t - l~(fU* ~

333 232 I- 321 332 C- 212

(~(~Lb LbLbld. LbIcLb ..LbLb LbLbLb

~ 2 -
Ad Ad U
~ - i Ad 4
4 7 4 t -

-J ..h Ad .J U 2
0

2
4 C

a - I~ 4
C- - - C

N - - 4
-' - 0 0 (~ 2
Lr 2 a a

'S - 3 4 g Ad
p. U. 4 C C C

U. 0 4 C 0 2
- 4 1 1 -

2 - .4 1

222

-I

The within-procedure times are predicated on the assumption that
labeled statements within a procedure identify significant blocks of code

within the procedure. Consequently, the data accumulated in association

with these labels describe how frequently these blocks of code within a
procedure are executed and how long each execution requires. The column en-
titled "TOTAL TIME TO" gives the amount of time, number of times, mean and

standard deviations that it took between the time a procedure was activated
and the time that the label was encountered. The column headed "ACTIVE TIME
TO" gives the total amount of time, number of times, mean and standard

deviation between the time the procedure began execution, and tne time the
labeled statement was encountered. Consequently, these columns will always

contain, at most, a single count for each activation of a procedure.

The column headed "NUMBER OF ENCOUNTERS" tabulates the number

of times per execution that the labeled statement was encountered. This
number is indicative of the frequency with which a particular section of

code was executed. Finally, the last column, "ENCOUNTERS," indicates the
number and percent of times the labeled statement was executed for each
distinct execution of the procedure.

These statistics can have important consequences when one
attempts to determine the training requirements for a specific system. In
particular, they indicate how much concentration should be placed on training
operators on certain routine operations.

4.7.8 The Link Analysis (Figures 73 and 74)

In the HODAC Link Analysis, the analyst defines groups of displays
and controls. HODAC will then accumulate statistics on the number of
operator "transitions" from group to group and within each group. These
statistics include:

0 Times for moving a body part from an element in one group
to an element in another group.

223

i

H

wI

I *4*O4 Il~ E@,Ep

*P,

0.,,4

I .--.

. nu . .. I 0 ,,@ .,,. ,

: -

III ' l ,i T '........ ' . ".

0-0

L1L
4 M -

23.

oc co ceQo

I 0 c 00t oc
Cz i a 4. Ca: w w I 4j4

.1 c.9
I '9jcm c 2 (

CD- 4- -

- U225

0 Total times that a body part is idle and/or dwelling in
a particular group.

0 Link frequencies (i.e., the percentage of all movements of
a body part that are within a particular group or are from
one particular group to another).

4.7.9 Inputs to HODAC
The only inputs required by HODAC are the control cards that

invoke the desired analyses. The allowable syntax for these cards is des-

cribed in detail in the HOS Users' Guide and on the HOS Reference Card.

However, unless special constraints are to be placed on the analyses, the

following control cards can be used to obtain each of the major HODAC

analyses:

LABELS.
DEVICES BY PARTS.
DEVICES BY USAGE.
DEVICES BY PROCEDURE.
PROCEDURES.

A Tim~eline Analysis can be obtained by simply inserting the

clause:

TIMELINE EVERY n SECONDS

prior to the period on any of the preceding control cards, where n is

replaced by the "snapshot" interval.

A Channel Loading Report can be obtained by inserting a clause:

CHANNEL-LOADING EVERY n SECONDS

prior to the period on any of the preceding control cards, where n is

replaced by the "snapshot" interval. (The Timeline clause and the Channel

Loading clause cannot be used together.)

226

iz-

A Link Analysis requires the definition of the groups to be

linked together in the analysis. The format for invoking a Link Analysis

LINKS SYSTEM system-name = device THRU device; device ... ;

SYSTEM system-name = device THRU device.

where system-name is an arbitrary (and optional) name supplied by the user

and the device names are the names of the specific displays, controls, and/or

symbols that are to be considered members of a group.

4.8 UTILITIES

Several utilities are available that provide listings for each

of the HOS programs. These utilities -- LISTHAL, LISTHOS, and LISTHOD --

require no inputs.

2

i
227

r7

This page intentionally
left blank.

228

APPENDIX A

THE HOS OPERATOR MODELS

229

APPENDIX A
THE HOS OPERATOR MODELS

A.1 COMPONENT MODELS USED IN HOS
The Human Operator Simulator is actually a set of models for

a variety of components of human performance that have been integrated
fnto a general composite model of the human operator. The HOS user must
provide a precise description of the operator's task and the equipment
that he must use to perform the task, together with specifications for
several parameters relating to the operator's physical and performance
characteristics. HOS then applies the various performance models to the
user's input in order to produce, as output, a detailed description of
the operator's performance in time.

The models embodied in HOS can be classified as follows:

0 Display and control taxonomy.

0 Task component taxonomy.

0 Procedure multiplexing model.

* Anatomy movement models.

* Visual and tactile perception models.

0 Memory model.

0 Mental computation model.

The display and control taxonomy and task taxonomy are models that
influence and must be evaluated separately from the dynamic performance
models for which they structure the inputs and outputs. The procedure

230

multiplexing model is the protocol by which the simulated operator (a

serial processor) schedules the execution of his various tasks (procedures).

These three models have a rather diffuse impact on HOS simulations in

that it is extremely difficult to evaluate any of them except by assessing

the adequacy of the total HOS system. These models and how they evolved

are described in Sections A.2 through A.4.

The anatomy movement models describe the functional assignments

of body parts (e.g., which hand to use to grasp a particular contro) and the

dynamic response characteristics for each body part. A discussion of these
models is presented in Section A.5.

Section A.6 presents a detailed description of the structure of

the perception, memory, and mental computation models. These are the

models of the operator's cognitive processes as represented in HOS. They
describe how the operator functions as an information processor, i.e., how

he obtains estimates for the values of the displays and controls, and per-

forms mental calculations that are mathematical and logical functions of

these values.

We will frequently point to theoretical and empirical support

for the HOS models in the literature of human performance psychology. How-

ever, it should be remembered that these models have been developed to
serve an immediate practical purpose -- to develop a simulation of the

? human operator that provides an economical tool for determining the human

performance consequences of any particular man-machine interface design.
Thus, we have had to impose practical constraints on the models in order

not to overwhelm the information processing capacity of the computer and
to maintain consistency within the HOS models. The main differences between

the HOS models and the models in the psychological literature lie in the
fact that we have developed several models for performance for which we

could find no directly relevant published studies. For example, in the
development of the procedure multiplexing model and the mental computation

231

model, introspection and intuition have guided the model development. Since

it was anticipated that the HOS mdoels would be improved as appropriate

research findings became available, the HOS software system has been

designed in a modular form to allow easy modification to any of the com-

ponent models.

A.Z THE DEVICE TAXONOMY

The classification of devices used in HOS has a significant
impact on all of the other HOS models. The classes of devices, as defined

in HOS, are listed and described in Table A-I. This taxonomy places

d evices in different classes whenever qualitatively different procedures

on the part of the operator would be required to use the devices. Within
each class, differences between devices, such as size, location, and range
of possible values, are specified by the user on HOS data cards. These

data are used when a specific device is accessed in a specific situation.

A.3 THE TASK-COMPONENT TAXONOMY

The basic units of work in which HOS describes the actions of

the simulated operator comprise a normative model of human performance.
Two levels in the human performance hierarchy are employed in HOS -- the

procedural level and the individual action level.

HOS procedures can vary from the "macro-level," those describing
mission objectives, to the "micro-level," those describing detailed actions.

There are five basic procedural actions. They are:

(1) Activate a procedure -- Place the procedure on an active
procedure list from which it will be chosen for execution
by the multiplexor when its criticality exceeds that of
all other procedures on the list.

(2) Complete a procedure -- Discontinue execution of the current
procedure until the specified procedure has completed
execution.

232

Table A-1. HOS Device Taxonomy

DEVICE CLASS DESCRIPTION

Discrete Displays Devices which present information to the operator in terms of
discrete settings.

Continuous Displays Devices which present information to the operator in terms of
values which may vary continuously along a single dimensional scale.

Positional Displays Devices which present information to the operator in terms of
ordered pairs of numbers.

Discrete Controls Manipulable devices that can assume only discrete settings.

Continuous Controls Manipulable devices that can assume values which may vary
continuously along a single dimensional scale.

Positional Controls Manipulable devices for which the device value is defined as the
location of the control element.

Symbols Figures that appear on CRT displays for which information is
conveyed by the location of the figure on the screen and for which
there may be a variety of associated attributes (e.g., size, color,
type), each of which may be either discrete or continuous.-

233

(3) Perform a procedure -- Place the procedure on the active
procedure list and begin execution of the procedure immediately;
do not resume execution of the current procedure until the
specified procedure has completed execution.

(4) Monitor a device -- Place the procedure for adjusting the
device on the active procedure list and periodically execute
the adjust procedure until told to stop.

(5) End a procedure -- Remove the procedure (regardless of
type) from the active procedure list.

These procedural actions have direct HOPROC statement counterparts,

ePnabling complex procedural descriptions to be achieved with a minimum number

of statement types.

The operator's repertoire of actions has been adapted principally

from the studies of work movements performed by time-and-motion analysts

(see, for example, Karger and Bayha, 1g66). The major departure from the

time-and-motion study taxonomy lies in the inclusion in HOS of a work unit

for the process of mental computation. This addition was necessary in

order to enable HOS to model the range of decision-making functions that

would be made by an autonomous operator. The complete set of basic actions

consists of the following:

0 Reaching and grasping a device with a hand or foot.*

*At present, HOS models body movements at the level of individual
-hands, feet, eyes; movements of fingers, elbows, or knees are not modeled.

Thus, some difficulty would be encountered if the present version of HOS
were used to simulate the fine-grained details of the operation of a type-
writer keyboard. However, these limitations are not expected to be signifi-
cant in any of the currently anticipated applications for HOS.

/

234

* Looking at a device -- moving the visual fixation point
to the device location.

0 Absorbing information from a display, control, or symbol
via vision or touch.

* Manipulating a control.

* Attempting to recall the value of a device or function.

* Performing the computation of an operator function. I
A.4 THE MULTIPLEXING MODEL

As stated previously, the operator, (1) can place procedures on
An active procedure list, (2) may or may not execute them immnediately, and

(3) can remove them when completed or no longer needed. The multiplexing
model controls this selection of procedures -- it selects the procedure to
be executed whenever a procedure is completed or interrupted. While the
HOS operator can execute only one procedure at a time, individual actions
can occur simultaneously if they do not require the same physical resources;
virtual parallel processing can be achieved through rapid switching between

procedures. Procedural selection takes into account the type of procedures
on the active procedure list (regular, enable, adjust, or disable); the
initial criticality for each procedure as supplied by the analyst; the

amount of time elapsed since the procedure was last executed; and, for pro-
cedures that monitor continuous devices, how close the value of the device
is to its desired value. The multiplexing algorithm has been designed to
give an intuitively reasonable weight to each of these factors.

There are several principles according to which the multiplexor

operates; they are:

(1) If all procedures on the active procedure list are inter-
rupted, then the simulation time is incremented until one
of the procedures is no longer interrupted.

235

(2) If there is an uninterrupted enable procedure on the active
procedure list, then that procedure is given absolute priority
over all other procedures.

(3) If steps 1 and 2 have not selected a procedure, then an
effective criticality is computed for each uninterrupted
procedure and the procedure with the highest effective
criticality is selected. The effective criticality, ECRIT,
is defined as:

ECRIT = CRIT *TMULT*ADMULT

CRIT -- is the initial criticality supplied by the analyst.

TMULT -- is a function of the time elapsed since the last
execution of the procedure.

AOMULT -- is a factor that, for monitor procedures, measures
how close the estimated value of the monitored device is to
its desired value.

(4) The function currently used for TMULT is:

MULT - I + loglo (I + t)

where t is elapsed time since the last execution. ADMULT
equals I for all procedures other than monitor procedures,
for which:

ADMULT : -DSR

where

E -- is the operator's estimate for the value of the device
linearly extrapolated to the present time.

DESIRE -- is the desired value of the device.

UPPER -- is the upper limit for the desired value of the
devi ce.

Top priority is given to enable procedures since they are always

prerequisite to the execution of some other procedure and generally consume

very little time. Relative priorities for other procedures can be established

by the analyst through the choices of initial criticalities for the procedures.

Cri'icalities can also be reassigned by the analyst throughout the simulation.

236

The functions for TMULT and ADMULT were chosen so that neither

factor would completely dominate the other. Since adjust procedures are

expected to keep the estimated value of the adjusted device within the pre-

scribed limits, ADMULT is expected to vary between 1 and 2. Clearly, when

ADMULT is near 2 (i.e., when the estimated value of the device is near one

of its limits), the adjust procedure should have a high criticality.

Accordingly, TMULT was defined so that its range would be comparable to

that of ADMULT over the domain of elapsed times appropriate to HOS pro-

cedures. Thus, TMULT = 2 when the elapsed time is 9 seconds and TMULT = 3

when the elapsed time is 99 seconds.

In choosing initial criticalities for procedures or in modifying

criticalities during a simulation, careful attention must be given to the

interaction between the initial criticality and TIMULT. Ignoring, for the

moment, the contribution of ADMULT, the initial criticality of a procedure

can be interpreted as a factor that determines how long a procedure must

wait on the active procedure list before it attains the same effective

criticality as another procedure which has either just been added to the

list or just completed a portion of its execution. For example, if pro-

cedures A and B are on the list and have initial criticalities of CA and

CB respectively, with CA > C, the procedure A will be executed first.

Whenever procedure A is completed or interrupted, TMULTA will be exactly 1,

since the elapsed time since execution of that procedure is zero. TMULTB,

on the other hand, will be greater than 1. As long as procedure A remains

on the list, procedure B will have to wait until TMULTB. CB > TMULTA ' CA

before it will be executed. Since TMULTA will always be exactly 1, the

minimal waiting time for procedure B will be the time at which TMULTB = CA/CB.

Table A-2 indicates the minimal waiting times for procedure B for a variety

of values of the ratio CA/CB. Note that when there are more than two pro-

cedures on the list, the comparison standard (procedure A) should always

be the procedure with the highest initial criticality since that procedure

will dominate.

237

°I

Table A-2. Minimal 4aiting Times as a Function of the Criticalities

of Procedures A and 3

RATIO CA/Cs WAITING TIME (SECS.)

1.000 0
1.176 .5

.301 1.0

1.477 2.0

1.602 3.0

1.690 4.0

1.778 5.0

1.845 6.0

1.903 7.0

1.954 8.0

zo 9.0

2.041 10.0

2.415 25.0

2.708 50.0

3.005 100.0

2

238

A.5 THE ANATOMY MOVEMENT MODELS

The HOS anatomy movement model determines which body part will

perform each specific perceptual and manipulative task and how much time will
be consumed by the movement required to accomplish each task. Also, to

maintain versimilitude, the anatomy movement model moves a body part to

a "relaxed" location whenever the body part is to remain inactive for a

period of time specifiable by the analyst. The model currently describes
eye, hand, and foot movements. Each hand and foot movement time is deter-
mined according to a straight line path between the current location and

the desired location, whether or not the crewstation geometry would actually

permit such a movement. All movements are ballistic, i.e., they cannot be
altered or terminated mid-course. The hand and foot movement precision
required varies with the dimensions of the device to which they are being

moved and is thus included in the movement time calculation, thereby

compensating for any fine positioning movements that may be necessary.

A.5.1 Body Part Selection

The determination of the body part to be used in accomplishing
any task is made according to a set of common-sense principles in conjunction

with the constraints that the analyst places on which body parts can read

and manipulate each display and control. Devices can be characterized

such that:

0 Only the eyes can read the device; manipulations are not
possible.

* The eyes are preferred for reading, but the hand may also
be used. Hands are used to manipulate, but the simulation
will require the operator to look at the device before moving
his hand to it.

* The hands are used for both reading and manipulating and the
operator will not look at the device before moving his hand
to it.

* The feet are used both to read and to manipulate the device.

239

Body movements are initiated by either an explicit instruction
to read or manipulate a device or by an instruction to look at or grasp a

device. The logic that determnines which body part will be used is somewhat
different for these two situations. The GRASP/LOOK AT instruction enables
the analyst to direct the operator to move a body part to a device in
anticipa.tion of the fact that he will later have to read or manipulate the
device. Consequently, the location of the device becomes the "grasp location,"

i.e., the location at which the assigned body part is to be kept when not
needed elsewhere, until some action (reading or manipulating) is performed
by that body part at that location or until another "grasp location" is

-established for the body part. If the body part is moved away from its
"~grasp location" in order to read or manipulate another device, it will be
moved back to the "grasp location" as soon as the other action is completed.

When the instruction is to "look at" a device, there is, of course,
no difficulty in determining the appropriate body part for the task. How-

ever, when the device is to be grasped by a hand, HOS must decide whether
to use the right or left hand. Figure A-1 illustrates the logic used in
making that decision. If the hand closest to the device has no assigned
grasp location, then that hand is used. Otherwise, HOS attempts to maintain

any old grasp locations, if possible, by using the less preferred hand or
by switching task assignments for the two hands. Grasp locations for the
feet are determined according to exactly the same logic as the hands with
the exception that the foot assignments will not be swapped to maintain
an old grasp location.

The logic for determining which hand will perform a reading or

manipulating task is illustrated in Figure A-2. The variable TINC is a
user-specified time value which represents the maximum amount of time that
the simulated operator will wait for an occupied body part to become avail-
able before he will attempt to find another means for completing a task.
If the hand closest to the device of interest is available now or will be
available within TINC seconds, then that hand will be used for the action.

240

L1

LETTHEPREFERRED
HAND BE THE HAND
CLOSEST TO DEVICE

DOES RE-ESTAGLISH GRA
EITHER HAND LOCATION FOR THAVT' EXITALREADY HAVE 10 AS 4AND

ITS GRASP
LOCATION

NO

DOES
THEPREFERRE SET GRASP LOCAT ION

HAN 0 CURRENTL Y OF PREFERRED HAND EXIT
HAVE A GRASP TOM

LOCAT.ON

YES

CAN
THE OTHER CAN

CUHANO REACH THE NO THE OTHERFIFIENT GRASP LOCA HAND REACH
TION OF THE PRIE- OEVICE

F.RREO HAND 107

YES YES

WILL
THE OTHER 001ES

BE L
E r

!R HANOORAVAI AOL YE C OTHER 75ET TME GRASP ON
THE F W ICH EV

BEF PRE, HAND CURRENTLY OF WHICHI, ER HAND EXIT
YJLL Be FREE FIRS

' OTHER

10

TH RAVE A GRASP
WILL BE FI Se FPST io

ERRIED HAN 10LOCA TION 10

NO NO

IS ISET THE GRASP LOCATION
THE OEVIC OF THE OTHER HAND

10 ON rME PRE No

SET GRASP LOCATION PERFICO HAND SIDE TOM

OF "RIF ERRED HAND OF THE PRE

Tolo PERRED
AND

YES

EXIT
F CUTE A .. OSWAP

AND SET ., GRASP
LOCATION OF TME PRE
$:ERRED HAND TO 10

Figure A-1. Logic of Grasp Location Assignments

241

a4N SE IN HAND

COsTTO tWS O2V ICE

4AI40 AV41LASLE
%aOwl

SWAP N4ANO ASSIGNMINTS
ANO PERFORM FOVEIMENT
WITH '~PIFRIME NANO

THE FOqh Is ANN

W CHOTE AN GTHOTE l HIM

AV ZPLA BOL"IW~lormal N I I T AORAH N ADAAIA E 4N VC T
'1CISc.To01IIPNIPIETLCTO

~~~igure ~ ~ ~ ~ ~ ~ O Two. Mei-f~ain/aiualn oyPr
Assignments

242D

yes YES



Otherwise, the other hand will be used if it can reach the device and is
available. If the other hand cannot reach the device but can take over
the task which the preferred (closest) hand is performing, then the hand

assignments are swapped. If none of these conditions is satisfied, then
the operator is stymied and unable to continue work on the current procedure
until the situation changes.

The logic for determining the assignment of feet for reading and
manipulating is exactly the same as for hands, except that foot swapping is

not allowed. For devices that can be read by either the eyes or the hands,

the eyes will always be used unless a hand is already in contact with the
devi ce.

A.5.2 Movement-Time Models
The times associated with each body movement are based on formulas

derived from a variety of human performance studies. These equations pre-
dict movement times that are based solely on the magnitude of a movement;
thus, there is no variability as is observed in actual human performance -

the current equations do not attempt to model individual differences or
random variations in movement times. Thus, at present, the equations describe
a perfectly consistent average operator.

Eye movement times are determined as a function of the changes
in angles of focus and onvergence, as shown in Figure A-3. The change in the

angle focus, as shown in Figure A-3a, is the angle between the two Fixation
points and the design eye reference point. If the vectors from the design
eye reference point to the two fixation points are P 1 and P 29 then by the
law of cosines, the change in angle of focus will be:

=cos- 1  (1 2TI 11 f1 21,

243



1 P2
(a)

P1 a FIXAT1ON POINT 1
P2 a FIXATION POINT 2

81 a ANGLE OF FOCUS FOR P1
ANGLE OF FOCUS FOR P2

a CHANGE IN ANGLE OF FOCUS 1e1 -e2

e2

KEYES

P1

(b) I P - FIXATION POINT 1

(J P2 * FIXATION POINT 2

1 0,I - ANGLE OF CONVERGENCE FOR P,

22 a ANGLE OF CONVERGENCE FOR P2
40- CHANGE IN ANGLE OF CONVERGENCE = 1 -

A
---- (.7

2. 5 " -,

Figure A-3. Derivation of Eye Movement Equations

24,



where P1 * P2 denotes the dot product of PI and P2 ' and JPIj and jP2 j
are the magnitudes of PI and P2' respectively. The change in the angle

of convergence, as shown in Figure A-3b, is calcualted by assuming that

fixation points are in the sagittal plane of the operator. Thus, the angle

of convergence is the angle that the line of sight for either eye makes

with the line connecting the two eyes. For an interpupillary distance of

2.55 inches (corresponding to a 50th percentile USAF pilot), the change

in the angle of convergence, AO, will be:

AO tan- P I tan' P

Eye movement angles, Ae and a4, when related to movement times

in an experiment involving lateral eye movements (conducted by Dodge and

Ciine, 1901) and an unpublished study that involved both lateral and con-

vergence movements (R.J. Wherry and A. Bittner), yield the formula:

T = .14324A + .0175

where A = max (AGA¢) + .2 min (Ae,Ao) in which Ae and AO are expressed

in radians and T, the movement time, is in seconds.

It should be noted that this model, while accurately representing

the experimental results, describes only ballistic eye movements and does

not consider the processes of visual search, accommodation, adaptation,

or interpretation.

The equations for hand and foot movement times are derived from

adaptations of Fitts' model for speed and accuracy of body movements (Fitts,

1954; Fitts and Peterson, 1964). Fitts' law, derived from Shannon and

Weaver's theory of information transmission (Shannon and Weaver, 1949),

/

; 245



states that movement time is a linear function of the "information content"

of a movement. The information measure, which Fitts called an index of

difficulty (ID) is defined as:

2 WID * log2

where A is the amplitude of the movement and W is the permissible range of

terminal movement error or target bandwidth. The validity of this law has
been demonstrated for a variety of self-paced, repetitive movements between
two targets (Fitts, 1954) and for discrete movements under a variety of

uncertainty conditions (Fitts and Peterson, 1964). Other investigators have

suggested a modification of the definition of ID which provides a slight
improvement in the descriptive accuracy of the law (Welford, 1960; Drury,
1975). The revised index of difficulty (ID'), which was designed chiefly
to predict movement times near zero for ID values near zero, is defined as:

ID, - log, A(* .s)

It has also been suggested that the model parameter for control size, W, be

interpreted as an empirical measure of movement accuracy rather than as a
directly observable dimension of a device (Crossman, 1960; Welford, 1960;
Drury, 1975). Thus, the value for W should reflect the dimensions of the
hand or foot that operates a control and the manner in which the control

is contacted (thumb and index finger grasp, index finger depression, etc.)
as well as the size of the device.

Despite the widespread acceptance in the human performance
4literature of some version of Fitts' law, a re-analysis of the data shows

that a superior funcitonal description is possible. Fitts' law Implies

that movement-time can be decomposed into two components, one of which is
a function of the amplitude of the movement, the other a function of the
accuracy of the movement (i.e., the width of the target), and that the

total movement time is just the sum of these two component times.

246



It can be shown that the best decomposition of the total movement times

into two additive components (i.e., the decomposition that minimizes summed

squared error) consists of assigning the marginal means plus an arbitrary

constant to the level of one of the components and then assigning to each

level of the other component the mean (for that level) of the remaining

movement times. Thus, it is possible, objectively, to separate the total

movement times obtained by Fitts into two components, which we will call

travel time and aiming time, without making any assumptions other than

that the components are additive. The decomposition is unique only up to

an arbitrary additive constant, although the restriction that the component

times must be positive severely limits the allowable range for the constant.

In any case, the shapes of the empirical functions relating travel time to

distance moved and aiming time to target size are uniquely determined by

the data. We have decomposed Fitts' movement time data in this manner to obtain
travel time and aiming time components and then examined each of the com-

ponents separately to determine what mathematical function would best
relate the component time to the distance moved or target size. This

stragegy avoids the assumption inherent in Fitts' approach, that ,..h

components must be described by particular logarithmic functions. In fact,

a logarithmic function does provide a very good fit to the obtained aiming

time data for which we found

t A .135 - .096 log2 W

where tA is the aiming time and W is the target width. The travel time

data, however, appears to be much too linear to permit an acceptable fit

by a logarithmic function. The travel time function is clearly negatively

accelerated, so even though a straight line fits the data better than any

logarithmic function, the linear function is also unacceptable. Figures
A-4a and A-4b display the empirical functions for travel time and aiming

time along with the best fitting logarithmic function for Fitts' one ounce

stylus data.

247



ICi
L

vi

S~e c

P-

WNW". UL

248



Although HOS requires a model for discrete movements, the previous

analysis was based on data obtained for repetitive movements because of

the lack of available appropriate data for discrete movements. Although Fitts
and Peterson (1964) performed the appropriate experiments with discrete

movements, they report their movement time data only as ufunction of ID

value rather than reporting separate times for each combination of target

size and movement distance. The best linear fit between ID value and
movement time for their data is:

MT =.074 I0 - .070

where MT is total movement time in seconds. Since Fitts and Peterson report

the same pattern of results for discrete movements, as was previously

obtained for repetitive movements, it seems reasonable to assume that the
aiming time components of this function would be acceptable, while the

travel time component would be better described by some other function.
Thus, the model for aiming time currently used in HOS is:

for w > 2
A 0A .074 - .074 1oc IV for 0 < w 1; 2

where the additive constant was chosen to predict zero aiming time for a

two-inch target. The cutoff of two inches for target width was employed

because the available data did not include any larger targets and because
the aiming time curve appeared fairly level at that point. We have examined
a variety of functional descriptions for travel time, but the available
data has not permitted a definite choice to be made. Although HOS currently

employs a travel time model (suggested by Topmiller and Sharp, 1965), we
anticipate modifying this model in the near future. The relationship

proposed by Topmiller and Sharp is:

t d
tT 1.75d + 8.99

249



where t1. is travel time and d is distance in inches. This model is favored
over Fitts' model for travel times because it was derived by fitting a

curve to movement times obtained for movements to control switches on a

simulated control panel. This situation is deemed much more relevant for

HOS applications than are the movements of a stylus to rectangular targets,

as studied by Fitts and Peterson.

It has recently been demonstrated (Drury, 1975) that Fitts' law

applies quite well for repetitive foot movements between coplanar pedals.

For this situation, Drury found that the best linear function for relating

C to r01 was:

MT repetitive .187 + .085 1D'

where 101 is as defined previously and the effective pedal width, W, is
defined as the sum of the physical pedal width and the operator's shoe width.
This formula can be converted to a formula for discrete movements, Drury

argues, by multiplying by the factor relating repetitive hand movement
times to discrete hand movement times for the Fitts studies. (He reports

that factor as 1MT dicee/MT reeitv .61). Drury's formula for dis-

crete movements between coplanar pedals is, therefore:

MTdcrt .114 + .053 1D'

Limited experiments by Davies and Watts (1969), in which discrete
movements between coplanar pedals at a single separation were compared with
movements between a single pair of non-coplanar pedals suggest that this
formula can ge generalized to non-coplanar pedals. Their results showed that

it took an average of .149 seconds to move 6.5 inches betgeen coplanar
pedals and .309 seconds to move between the pedals when one pedal was raised
6 inches. Assuming that the time penalty for non-coplanar movements over
coplanar miovements is proportional to the ratio of the required change in

250



leg extension to the amplitude of the movement, movement time would be

predicted by the general formula:

MT = 10+ 1.4 'E) (.114 +.052 ID')scod

where AE is the change in leg extension required by the movement. We

expect that this model will be modified as additional relevant data become
available. For the present, it accurately predicts foot movement times

between pedals of common dimensions at some common separations consonant
with the data of Davies and Watts (1969) and Drury (1975).

Times associated with manipulating controls are largely left

to the user since general formulas that predict manipulation times for the
diverse types of contemporary controls are not available. For discrete
controls, HOS requires that the user specify the time that it takes the
operator to move the control between two adjacent settings. The time con-

sumed by a manipulation of more than one setting is then calculated as the
product of the number of settings to be moved through and the input time

cost for a single setting cha le. In assigning the input time costs for

discrete devices, it is thus incumbent on the user to determine the most
salient factors that characterize each control to be modeled and then to
consult a reliable source in order to obtain empirical manipulation time
data for that type of control. For general information on the importance

of the various control design factors, we refer the reader to Chapanis and
Kinkade (1972). For more detailed information about the operation of key-
set devices, we suggest that the reader consult Seibel (1972). A variety
of sources offer experimental data, obtained by several different methods,

on the times for operating discrete devices -- Bradley and Wallis (1959,
1960), Dean, Farrel, and Hitt (1969), Goldbeck and Charlet (1974), and
MacPherson and Siegel (1967).

251



An explicit formula for the operation of continuous rotary con-

trols is included in HOS, requiring only that the user specify the force

needed to turn the dial. This formula, derived by fitting a simple quadratic

function to a table of idealized data (presented by Karger and Bayha, 1966),

is:

T = .0482 + .0050F + .0825A + .0084 FA

where F is the force in pounds needed to turn the dial and A is the angle

through which the dial is to be turned in radians. Unfortunately, we have

ant found any data that can be used to assess the validity of this formula.
However, through the study of video-tape records of control operations in

the course of a protracted mission, Goldbeck and Charlet (1974) determined

that the mean time that the operator's hand stayed in contact with any

continuous rotary control on a single manipulation was .73 seconds. Of
course, this time may include some idle dwell time as well as multiple
manipulations that were not discriminated during data analysis. Assuming

that the forces required to turn the knobs in that study were about one
pound and the magnitudes of the turns were of the order of 600 to 1200
(roughly one to two radians), then the HOS model would predict manipulation

times in the vicinity of .2 seconds. This comparison suggests that HOS
may underestimate control manipulation times, but revising the model would

not be appropriate until sufficiently comprehensive data (including complete
physical specifications of the controls) becomes available.

A.6 THE COGNT1VE MODELS

The information processing functions modeled in HOS include

information absorption, menory, and mental computation. The models for

these three operations are intricately interrelated through a variable

termed hab strength that is associated with each device or mental calcula-

tion and represents the durability or strength of the operator's knowledge

of its /alue. The models are also related to one another by informational

task denands as depicted in the flowchart of Figure A-S. The information

252

--- J



processing models may be accessed either directly by instruction (as

indicated by the double arrow at the top of the figure) or indirectly by

the requirements of another process, such as when the computation of an

operator function (the HOS term for mental calculation) depends on the

absorption (the HOS term for perception) of the value of a display or

control.

In examining the HOS cognitive models, it is appropriate to

analyze the implications of each of the following considerations for

each model:

(1) Type of information to be handled.

(2) Aspects of performance to be described.

(3) Specifications of processing details.

(4) Interpretation and estimation of model parameters.

(5) Experimental situations appropriate for model verification.

Each point, except the first, will be treated separately for

each of the three models with which we are concerned. Since the informa-
tion to be handled by the models is essentially the same for all, the first
point will be discussed only once. Also, since the hab strength concept
is basic to all three models, we will present a description of how hab is
used and modified by the models before we discuss the specific models.

A.5.1 Types of Information

Device values are represented in HOS as discrete settings, real
numbers, and ordered pairs of real numbers for devices that are declared
as discrete, continuous, and positional, respectively. Each such value is
treated as a single item or "chunk" although the range of possible values
may vary considerably across devices. Values of operator functions are

less restricted in principle than are device values. However, function
calculations will generally represent operations performed on device values

254 pR~kji)1i'G p.~x B LAW-!NOT Fl L-ED



and results of function calculations will frequently be compared with

device values; thus, function values can also be assumed to represent

either discrete settings, real values on continuous scales, or positional

quantities (ordered pairs of real numbers).

HOS actually maintains several parameter values that relate to

the operator's knowledge of a device or operator function value, although

only one represents the operator's conscious knowledge of the cuirrent

value. In particular, the information stored by HOS includes:

0 The actual value of a device or function.

* The operator's current estimate for the value of a device
or function, the time when that estimate was obtained, and
the hab strength associated with that estimate.

* The estimated value that the operator obtained immediately
prior to his current estimate, the time when that prior
estimate was obtained, and its associated hab strength.

* The desired value for a device or function.

* The desired upper and lower limits for continuous devices.

Of these values, only the current estimated value is obtained

directly by the absorption, recall, and mental computation models. The

others (except for the desired value and desired limits which are not

used by the cognitive models) are used only in defining the functional forms

of the models and do not represent values of which the operator is consciously

aware.

All information that is absorbed, recalled, or computed by the

simulated operator is limited to the categories of discrete settings, real

numbers, and ordered pairs of real numbers. The operator does not have to

recall the steps in the procedures, and differences between two displayed

values are not perceived directly through the absorption model. However,

* the HOS user has considerable freedom in defining what is to be considered

255



a display or control, and operator functions may be constructed that perform

functions other than simple numerical calculations. For example, a clock
wth an hour hand and a minute hand may be treated as a single display for
time or it may be treated as two distinct displays sharing the same scale,

one indicating hours and the other minutes. These two ways of describing
the display might actually correspond to two different display reading

strategies available to the operator -- alternate ways of "chunking"
information. The consideration of how information is "chunked" will be

relevant to the evaluation of all three cognitive models.

-A.6.2 Hab Strength Modification
The concept of hab strength underlies all of the HOS models for

cognitive functions. It determines whether or not recall attempts will

succeed and how much time will be consumed by the processes of recall,

perception, and mental calculation. Like its namesake in the elaborate
stimulus-response (S-R) learning theory of Clark Hull, it represents a

measure of how well something is learned. However, unlike the Hullian

concept of hab strength, which indicates the relative intensity with whichT
a particular stimulus tends to evoke a particular response, the 1105 concept
of hab strength indexes the durability of an item of information in a

temporary memory store.

The hab strength for an item is modified when an estimated value
is obtained by absorption or comiputation or when the value is successfully

recalled from memory; the same formula is used to compute a new hab strength
whenever any of these events occur. The hab strength is modified once

upon the completion of the recall process; for the absorption and computation
processes, it is modified once for each 'micro-absorption' process or "micro-
computation." The new hab strength is observed from the old by the formula:

1IV HO 7
(1-V) I (t-R)k ()

25.6



where

Hl -- is the new hab strength.

H0 -- is the old hab strength.

R -- is an input constant (REMEM) representing the memory.
cycle time

k -- is an input constant (HABFAC) used as a scale factor.

t -- is the time since the estimated value was last determined.

S -- is a measure of the similarity between the current and
previous estimated values of an item.

V -- is a base level for the hab strength of that item.

The measure of similarity between two estimated values, S, ranges

between 0.1 and 1.0. For discrete devices, S is always 1.0. For continuous

devices and functions, S is defined by the formula:

1.0 if A l

S e " [(A'1)/61 2  if 1 < A < 10.105

0. if A 10.105

where
A = E-PE

TOL

E = current estimated value.

PE = previous estimated value.

TOL = user-supplied parameter representing a desired accuracy
tolerance for each device.

257



The minimum value of the hab strength for a device or function,
V, is a constant between 0.1 and 1.0 for that device or function. V may
be interpreted as the minimum hab strength that would be assigned if S were
zero (though S can actually never be smaller than 0.1). Values for V are
dependent upon the declared character of each device and function as follows:

'1 - 0.1 for discrete devices with more than six
possible settings and all functions and
continuous or positional devices.

V - .05 for all discrete devices for which the
n number of possible settings, n, is six or

less.

V - .95 for all momentary devices

These values can be loosely interpreted as the probabilities of
"guessing" the value of a device, i.e., the minimum hab strength is higher
for devices with lower inherent uncertainty.

Two constraints are imposed on Equation 1 in its use in HOS in
order to maintain hab strength in the interval between 0.1 and 1.0. First,
if H 0 is less than or equal to 0.1, then H 0 is set to 0.1 and t is set to
zero. Secondly, if application of Equation 1 produces a value of H1 greater
than 1.0, then H1 is set equal' to 7.0.

In discussing the implications of Equation 1, it will be useful
to rewrite it as:

H1  V (1-V) H 0 .M()

where

MS
I + (t-R) k

258



The factor M then represents the influence of the previous determination

of an estimated value on the new hab strength. In order to ensure that M

is positive and finite, k must be chosen so that 1> k z 0. That is, k

must be chosen to be non-negative and smaller than the reciprocal of R.

Then, M will be larger than S whenever t is less than R, and M will be

smaller than S when t exceeds R.

In order to understand the HOS models for absorption and function

computation, it will be useful to describe the effects of repeated applica-

tions of Equation 2. Such a description is only feasible if M reamins

constant for successive applications, i.e., if S is constant and either t

is constant or k is zero. In many interesting siutations in HOS, the

factor M does remain constant for successive applications of Equation 2.

If Hi denotes the hab strength after the jth application of Equation 2 when

the starting hab strength was H0, then it can be shown that:

H = h - (h - H)if M < 1-V (3)

where

V
1 - (l-V) M

Note, that if j increases without bound, the H. will approach h. That is,
i3

H : lir H = h for M < l- 1 -  (4)

259



H is thus the asymptotic value of successive applications of Equation 2

when M is not too large. We can use Equation 4 to rewrite Equation 3 as:

H H. - (I-V>j M-1 (H,. - HO) for M.< I(S)

wnich incicates how each successive application of Equation 2 brings the

hab strength closer to H.

In addition to knowing the asymptotic value for hab strength,

Tt will be important to know how rapidly this value is approached and,

in particular, how many applications of Equation 2 will be required in

order for hab strength to exceed a predetermined value. This is important

because in the HOS models for absorption and computation, micro-attempts

at absorption or computation are repeated with the hab strength being

incremented according to Equation 2 on every micro-attempt until hab strength

exceeds a user-supplied value. This value represents the certainty threshold

that the operator must attain before he is "satisfied" with the result. We

will discuss the consequences of this model under the assumption that M is

constant in Equation 2, by using Equation 3. In particular, we will want

to know how many micro-attempts will be required to raise a hab strength,

Ho, less than the threshold to a value that exceeds the threshold. For

this to be a meaningful problem, we must require that the asymptotic value

for hab strength, H , be greater than the threshold since, otherwise, the

hab strength will never exceed the threshold. Letting L be the threshold

and Hk the hab strength after the k th micro-attempt, we can convert Equation

5 to a continuous function of j and apply a logarithmic transformation to

determine the number, NL' for which HN < L H. The solution is:

g [in (HL) In(H.- H 0 )J (6)

260



where 1 9) is the "greater integer" function, i.e., the smallest integer
that is greater than or equal to X.

A second constraint placed on the growth rate of H k is based on

the idea that if the increment in hab strength resulting from a micro-

dttempt is too small, then the operator should stop trying to absorb or

compute a value. As in the preceding case, we are interested in knowing
how many micro-attempts can be allowed before the absorption or computation

process will be stopped by this limit, d. Again, if we assume that the

same value of M applies for all micro-attempts, then the absorption process

will be terminated at the N d thiteration where:

N d =I [In d - in [1i - (1-Vr) NI] - in (IH. - ll)+ j (7)
g ~In [(I-v) Ni]1

Under the stated assumptions, the preceding derivations for H,

N L9 and N d represent precise determinations. The most severe restriction
was that M in Equation 2 had to be constant for successive micro-attempts.
Although this assumption is valid for many absorption and function computa-

tions, it is also desirable to know something about H., N L9 and N d when this
is not the case. Since M depends on both the similarity between successive

estimated values and the time interval separating their determinations, if
variations in similarity and time separation between estimates for an item

are reasonably erratic, then M can be treated as a random variable. If this
is the case, M can be replaced by its expected value in Equations 4, 6, and

7, and the formulas will represent expected operator approximations for H.,

1L' d Nd respectively.* However, if M varies systematically across

*See Bush and Mosteller (1956) for a discussion of expected operator
approximations for learning models similar to Equation 2.

261



successive applications of Equation 2, then the values for H., N L' and N d
must be derived in accordance with the specific manner in which M4 varies.

A.6.3 rhe Function Computation Model

Operator functions enable HOS to model the processes by which
the operator derives values from directly observed information. Thus, they
represent the arithmetic and logical functions that are carried out "in

the operator's head." In addition, operator functions enable the analyst

to access all the global FORTRAN variables in HOS and thus they possess all

the power inherent in a high-level computer language like FORTRAN. As a

result, they can be used for other purposes than to simulate the psychologic-
ally plausible operations of arithmatic and logic. rhe open-endedness of
operator functions poses some real difficulties when we attempt to interpret
just what cognitive operations are represented by any specific operator
function. Such uses of operator functions need not, however, compromise
the accuracy of HOS, if the user is careful to assign a zero time cost to
any operator function that does not represent a cognitive process or to

assign a high enough time cost to any function that represents more than a
simple mental calculation.

Because of the diversity of mental processes that can be simulated
by operator functions, the analyst must define each operator function in
FORTRAN and supply a basic time cost for each function. Whenever the value
of the function is required by a procedure or by another operator function,
HOS will either attempt to remember the value of the function, or will
execute the appropriate code. rhe time associated with the function calcula-
tion will be the sum of the times required to obtain any values needed by
the function (e.g., values of devices or other functions), plus the basic time
cost Fr the function multiplied by the number of times the hab strength
calculations must be repeated before any one of the following criteria is
sat isf~i ed.

262



0 Hab strength is greater than or equal to a threshold
"confidence" level (Equation 6 in Section A.6.2).

* Two successive determinations of the hab strength differ
by less than a user-specified amount (Equation 7 in
Section A..6.2).

* The number of iterations multiplied by the basic time
cost exceeds a user-specified time limit.

* The number of iterations exceeds the user-specified limit.

In determining the time costs for operator functions, the user

will have to depend mainly on his own ingenuity and resources because of

the sparsity of general guidelines and experimental data in the published

literature. Whenever possible, it is advisable to conduct at least an

informal experiment to determine an approximate time cost. For general

theories on mental arithmetic and some relevant experimental data, we refer

the reader to Thomas (1963), Dansereau and Gregg (1966), and Restle (1970).

Some time-and-motion study data on mental work is available in Quick, Duncan,

and Malcolm (1962).

A.6.4 The Absorption Model

The HOS model of perception is tailored specifically to the informa-

tion processing requirements of a complex man-machine interface. Whereas

most contemporary theories and models for perception attempt to describe how

sensory signals are processed into higher order codes, the HOS absorption

model is concerned only with the changes through time in the operator's
knowledge of the state of a display or control. It is therefore best to

refer to it as an absorption model rather than a perception model.

The same model is used to describe the absorption of information
both by vision and by touch. The user must specify which modality is

appropriate for absorbing from each device and whether the other modality

can be used when the preferred channel is otherwise occupied. The user
must also provide HOS with a single parameter value for each device that

specifies a basic time cost unit for absorptions from the device.

263



Absorption occurs in quantum steps called micro-absorptions that
are repeated until a termination criterion is satisfied. Each micro-
absorption consists of an updating of the estimated value and the hab
strength of an item and the assessment of a time charge for the micro-
absorption. The ricro-ebsorption process is repeated until any of the
following four termination criteria is satisfied (basically the same as
for function computations):

(1) Hab strength is greater than or equal to a threshold
"confidence" level (Equation 6 in Section A.6.2).

(2) Two successive determinations of the hab strength differ
by less than a user-specified amount (Equation 7 in Section
A. 6.2).

(3) The amount of time spent in the absorption process exceeds
a user-specified time limit.

(4) The number of iterations exceeds the user-specified limit.

This process is illustrated in the flowchart in Figure A-6 in
which T denotes the simulation time, C is the micro-absorption time charge,
and H(k), V, R, K, d, and L are the quantities described in Section A.6.2.

The details of these updating and time assessment processes are
determined by whether the device is discrete, continuous, or positional;
accordingly, we will analyze each case separately.

For discrete devices, the estimated value of a device is set equal
to its actual value, i.e., absorption of discrete devices is error-free. The
hab strength for discrete devices is modified according to the general
Formula described in Section A.6.2, with the similarity between the last
two estimates being set to 1.0. The time charge for each micro-absorption
is simply the basic time charge associated with the device.

264



CONTINUOUS /

EI1 PREVIOUS ESTIMATEO VALUE
1401 NAB STRENGTH F OR E01I
1ro  TIME WHEN E!O WAS OBTAINEC I
E01 CURRENT ESTIMATED VALUE
VIJi H-NAB STRENGTIl FOR EIII
Tfll TIME WHEN EBl WAS OBTAINED
A ACTUAL VALUE

* CURRENT SIMULATION TIME
I

i
' '  ; r A  E ' ' 

( 
I 

k 
°  

I\,e~' "I:,

-9 -H I [ - C

K>NABCY, 7

S~l'SURF EXI

Figure A-6. HOS Absorption Model

265

.o -/



Since the model automatically sets the estimated value equal to

the actual value on the first micro-absorption, the model makes no attempt

to describe the relative accuracy of the absorptions from discrete devices.

Thus, absorption from a discrete device is completely deterministic.

The absorption process for ccntinuous and positional devices is

similar to that for discrete devices, with embellishments appropriate to

the fact that the devices are continuous. The major differences are that:

(1) On each micro-absorption a new estimated value is determined
by averaging the actual value with a value extrapolated
linearly from the last two estimates.

(2) The micro-absorption orocess is not allowed to terminate
until the estimated value lies within a user-prescribed
range around the actual value (the "accuracy" associated
with the device).

(3) The time cost for each micro-absorption is calculated from
the basic micro-absorption time charge for the device and
the "dissimilarity" between the last two estimated values.

Absorptions from positional devices (i.e., absorptions of ordered

pairs of numbers) are treated as simultaneous absorptions of the two numbers

in the ordered pair, each number being treated as a continuous value. The

time charge for an absorption is then the maximum of the time costs for

the individual components.

t is difficult to derive a general formula for the time cost

of an absorption from a continuous or positional device, because of dif-

ficulties in soecifying the time cost for each iteration or the number of

iterations that will be required to bring the estimated value within the

specified tolerance range. As indicated in Figure A-6, the time cost of

each iteration cycle is (I + + DS)C, where

DS m rin 0.5, !-e -

26M A,



is a measure of the dissimilarity between the two most recent estimates of

the device and E and PE are the two most recent estimates. Note, that if

!E-PE: : TOL, then DS = .5. That is, if the two most recent estimates

differ by less than the "accuracy," then the dissimilarity value is exactly

.5. It is likely that this condition will hold for most absorption pro-

cesses, at least after the first iteration cycle, so the time cost for

each such micro-absorption will be exacti, 1.25C. Given this situation, the

recursion formula for E(k+l), reduces to:

E(k+l) 4 .5A 4 .9E(k) - .4E(k-l)

Two sample sequences of estimated values are graphed in Figure A-7;

it is assumed that the actual value, A, is constant and that E(l) - E(O) ; TOL.

Observe how the values are first on one side of the actual value and then

are on the other side. Also, note that the speed of convergence of the

sequence does not differ very much between the two sequences even though

the two initial values are quite different in the two cases. We have studied

many such sequences of estimated values generated by the absorption model

in order to determine just how much the rate of convergence actually varies.

Figure A-8 displays the number of iterations that must be performed for

a variety of initial values in order to bring the estimated value within

a two percent tolerance ra-ige of the actual value. Although other tolerance

values will generally be used in HOS, it is interesting to note that con-

vergence to this fairly strict tolerance is rapid and varies only slightly

between even the most disparate choiceL of initial values.

A.6.5 The Sho-t-Term Memory Model

he HOS operator is considered to be a "trained" operator. Thus,

there are many quantities (e.g., knowledge of task procedures and locations

of stationary displays and controls) that are considered to be in long-term

memory, i.e., the operator's ability to recall any of these quantities is

unaffected by the passage of time. However, most of the display and control

267



Cu

U,, -

>

cu

I-

f~nivY- Ivl)v.j
S~f'I- 30A3

268"



1.6 7 7 7 7 37 37 7 7 6 6 6

1.5 7 7 7 7 37 37 7 6 6 6 26

1.4 7 7 7 37 37 37 6 6 26 26 6

1.3 7 7 7 37 37 36 6 26. 5 5 5

1.2 7 7 7 36 36 36 25 5 15 5 57
E(1 1.1 47 47 46 36 3 2 14 4 4 47 47
A 1.0 47 4 4 3 1 3 4 4 47 47 47

.9 4 4 14 2 3 36 46 47 47 47 47

.8 5 5 25 36 36 36 7 7 7 7 7

.7 5 26 6 36 37 37 7 7 7 7 7

,6 6 6 6 37 37 7 7 7 7 7 7

.6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

E(O)

A

E(k+l) = {A+E(k) + (T(k).(k.1).(t.T(k)

={[A+E(k) + (E(k)-E(k-1)\ 11 1.25c ,j

= .5A + .9E(k) -.4E(k-1)

Figure A-8. Number of Extrapolation Iterations Required to
Bring Estimated Value Within a Two Percent
Tolerance of Actual Value (A)*

*If any subsequent iteration falls outside two percent bounds, super-
script indicates first iteration such that no subsequent iterations exceed
tolerance.

269



values vary with time. These items are normally not committed to long-term
memory and, therefore, the HOS process of retrieving the data corresponds
to a short-term memory model.

The variety of human performance characteristics that a short-term
mefrory model should be able to describe and that have been addressed by
other mnodels of memory, include:

* Probability of successful recall.

* Time cost (or latency) or recall.

* Probability of transfer to long-term memory.

* Effects of interactions between items in short-term store
and items in long-term store.

The HOS memory model has been designed to predict only the prob-
ability of recall and the time cost associated with a recall attempt. HOS
considers only the estimated value of a device to be subject to decay and
forgetting -- none of the other characteristics of a device enter the
recall model -- i.e., no other characteristics of a device can be forgotten.
HOS will, at the option of the user, extrapolate recalled values to the time
at which the recall attempt is made and/or degrade the accuracy of recalled
values to simulate the uncertainty associated with the recalled value.

The HOS memory retrieval model is based on data obtained in several
experimental studies of short-term memory,* in which it was found that the
relationship between probability of correct recall of an item and time
since presentation, could be described by:

Pu H I

*Peterson and Peterson (1959) and Murdock (1961).

270



where

P =the probability of correct recall.

t =the time interval between presentation and attempted recall.

H = a constant in the unit interval characteristic of the subject

and the experimental situation.

The H in Equation 3 is the formal definition of hab strength. How-

ever, as described in the preceding sections, rather than being a constant,

H is modified by HOS whenever a device or function is estimated.

Equation 8 was found to hold for a variety of experimental situa-

tions, providing that the subjects are prevented from rehearsing the

stimuli during the period between presentation and recall. Notice that

this equation implies that if H 1, P must approach zero as t becomes

large, so that the processes of long-term memory and random guessing are

not described.

It should be noted that the function usually used in psychological

literature to summarize the short-term memory data, differs slightly from

the previous equation. The function is generally described as exponential

(Pollatsek, 1969) with the general form:

P - Ke kt (9)

where K and k are positive constants. Equation 8 differs from this general

form only in that the exponent is /F- rather than t. This particular choice
of exponent was made in order to make the memory model produce reasonable
recall probabilities when the hab strengths were generated by the procedure

described in Section A.6.2. A comparison of Equations 3 and 9 with the

271



T

experimental data, has revealed that neither function produces a significantly

better fit than the other.

The HOS short-term memory model is actually somewhat more com-
plicated than Equation 8 would indicate. This equation is used to obtain
the probability of successful recall on a single recall attempt. However,
under certain conditions, the operator can make more than one recall attempt
and tine time consumed by the recall process depends both on the nuber of
attempts and on whether or not recall succeeds. In addition, the model
has optional -mechanisms for degrading the precision and extrapolating the
values of continuous devices that are successfully recalled.

Figure A-9 describes the complete HOS mnemory model. The time
consumed by an attempt to recall a value is indicated as "Cost'm in the

figure. Each micro-attempt at recall (i.e., each cycle through the model)
requires a constant amount of time and if recall succeeds, the time cost
is incremented one additional time by the same amount ot account for the
time spent in' retrieving the preceding value (i.e., the next to the last
value which is needed to extrapolate to the current estimate). The short-
term memory cycle time, R, is an input parameter that is constant for each
simulation and considered to be a characteristic of the operator.

:f a miicro-attempt at recall fails (i.e., if X, a random number
drawn from a uniform distribution on the unit interval, is greater than P,
the probability of recall), then further micro-attempts may or may not be
made, depending on the value of (X - P)/H. If this value is less than or
equal to a user-specified constant, then another micro-attempt will be
mnade.* 7his 7orrializes the intuitive notion that the operator will continue
to attempt to recall a value ff the current recall attempt has almost succeeded.

*rf limits on the number of recall attempts and the amount of time
spent in recall have not been exceeded.

K 272



A 7TEMPT TO RECALL ESTIMATED
S ET

S E R e(:VALUE FOR ITEM THAT WAS DETER-MINED t SECONDS AGO AND HAS HAB
STRENGTH H.

COST = 0
CYCLES - 0

H< . .......... RECALL FAI LS

NO

P - H

110
COST - COST - REMEMI
CYCLES - CYCLES

I
CHOOSE RANDOM
NUMBER, X, IN THE
UNIT INTERVAL.

DECAY AND EXTRA-
X <P7 YES POLATE ESTIMATED

VALUE IF APPRO-
PRIATE

NO

(X-P)IH < COST -

THRESH RECALL FAILS COST + REMEM

?

YES

RECOST > YES 
c LLCOST LIMIT SUCCE EDS

No

CYCLE
CYCL 'E L, 1AIT YES

NO

Figure A-9. HOS Short-Term Memory Model

273



Since the probability of repeated micro-attempts at recall is

dependent on the user-supplied values, the possibility of getting "stuck"

in a perpetual recall loop exists. For example, if the hab strength, H,

for an item is .5, and if 100 seconds have elapsed since a value was last

estimated (i.e., t = 100), then the probability of successful recall at each

micro-attempt is at most

P - H . .V0 - 001

- If the value of d were 2.0, then whenever a micro-attempt failed

(as would happen more than 9gg percent of the time), another micro-attempt

would always be allowed since

X-P XP S2.0

which must be true because 0 < X-P < 1.0. Thus, although there would be

virtually no chance of recalling the value, the operator would never stop

trying. HOS provides automatic checks on the recall probabilities and the

user can supply limits on the total amount of time and number of recall

attempts to be allowed to prevent such loops. If any of these limits are

exceeded, recall is assumed to have failed.

Although the basic recall model described by Equation 8 is

analytically manageable for purposes of parameter estimation, the complete

recall model is not. Although it has not been possible to derive explicit

expressions for the probability of successful recall and amount of time

consumed in the recall process under all conditions, reasonable approxima-

tions have bee, obtained for the two cases of most interest. These two

situations cc-respond to cases in which:

(1) The recall process is dominated by the input variable d.

(2) The recall process is dominated by the cycle and cost limits.

274



For both cases, it is assumed that 0.1 s H <1.0, since the pre-
dictions of the model are obvious for other values of these variables. In
this discussion, the following notations will be used:

H =hab strength for the item of interest.

t =time since the estimated value for the item of interest
was last obtained.

N =min (cycle limit, Cost Rlimit

maximum number of micro-attempts allowed.

P. probability that recall succeeds on the i hmicro-attempt.

q= probability that recall fails and further micro-attempts are
prohibited after the ith micro-attempt.

r. probability that recall fails and further micro-attempts are
1allowed after the ith micro-attempt.

P =probability of eventual successful recall.

Q = probability of eventual failure to recall.

R = short-term memory cycle time.

d =user-supplied tolerance such that further recall attempts
will lbyermitted if the random selected variable,
X > H/

C = total time required to obtain the estimated value.

A = time cost of obtaining the estimated value of the item of
interest by absorption or computation.

S.i = time cost of the recall process given that it succeeds after
1exactly i micro-attempts.

F. = time cost of the recall process given that it fails and
1exits after exactly i micro-attempts.

Note that some of these variables represent constants and others
should be considered as random variables. In particular, C, A, and F.i will

be treated as random variables. Our main interest will be in their respective
expected values, denoted as C=E(C), T = E(A), and F = E(F.)

275



Case 1: D Oominated Model

rn this case, d is such that the recall process is terminated by

the random variable X exceeding H + d • H. This condition can be stated
explicitly as:

rH d > 0 for i=I, 2 ... ,N (10)

where X is a random variable that is uniformaly distributed on the unit

- i-niterval and H F+ (i-7) R is the probability of recall succeeding on the.th
i micro-attempt, given that the process does not terminate on an earlier

micro-attemot. For .1 < H < 1.0 and R > 0, it must be true that

H VF > H /t + (i-l) R for i > 1. Therefore, for any X,

X -+ J (i-1) R .> - H or - , 2. . .

H 
H

and Equat 4on 10 may be rewritten as:

Pr - H > d > 0 (ii)

Equation 11 is satisfied if and only if the condition within
the parenthesis is valid for X 1. Hence, our restriction on the magnitude

of d reduces to:

3 d < - v( 
2

H

276

" -IJF "- ' '



Clearly, we cannot choose d so that Equation 12 will hold for

all admissable values of H and t except by choosing d = 0, which is not

interesting, so we must consider what sort of constraints Equation 12

places on H and t. Figure A-)O indicates the solution to this problen for

six different values of d. So long as the point determined by H and t

is below the line in the figure for a given value of d, then Equation 12

will hold for those values of H, t, and d. Since hab strengths in HOS

will typically be in the vicinity of .9 and recall intervals will frequently

be as short as one to two seconds, d must be approximately .10 in order

for Equation 12 to be valid and for Case 1 to be applicable.

Under the assumptions that Equation 12 holds, that R is small in

comparison to t and that N is large, an approximation for P, the probability

that the recall process will ultimately succeed can be obtained. The
.th

probability of success, P., on the i micro-attempt at recall is given

by the formula:

P = d' 1  Hi'* Vt -(-1) R

Thus, the probability of eventual successful recall, P, is the sum of

the success probabilities for all possible micro-attempts.

N N

277



LU.

7271



invoking the assumption that R is small in comparison to t

yields:

SH 1  - d h (13)

where P is an estimate of P.

As N -- (i.e., if the cost and cycle limits are removed from

the recall process) Equation 13 reduces to:

P .7H-1 (14)

The estimate, P, of P in Equation 14 is actually without error

if I and R = 0. When these assumptions are not met, however, it is

desirable to know how close we can expect P to be to P. Under the conditions

that . = - and R . C, it can then be shown that the accuracy of Equation 14,

as an estimate for P, is constrained by the following inequality:

n( !) R d " H
0 < P < P

t - d H)

Notice, in particular, that ; will always be an over-estimate of

D ind ..e estimatjon error will aooroach zero as the ratio - approaches

zero.

-II



Turning now to the estimation of the timE-cost of the recall

process for Case 1 , we observe that the mean total time cost, C, for the

process of obtaining an estimated value for an item can be written as:

r j +~ (1I - P) f

where the .rean zThe-cost for recall processes :nat succeed is:

N

1 =1 1

and the mean time-cost :or recall processes th1at fail is:

N

and where

= + i) R

is the time-cost of the process if recall succeeds on the i thmicro-

attempt and

4s the mein t'rne-cos:. if recall fails and the process terminates on the

1 croJ-attemu!-.

280

k mow



D-kG94 353 ANALYTICS INC WILLOW GROVE PA F/G 5/ft

I THE HUMAN OPERATOR SIMULATOR. VOLUME IX. HOS STUDY GUIDE U)

SE77 M I STRIEB,SF A GLENN, A J WHERRY N
6
2269-78-M-6685

rINCLASSIFIEO TR1320 V0L_9 
NL



Again, assuming that Equation 12 holds, that N and that t is large

with respect to R, we can obtain the following approximations for 'C and f

and

R P
Cf W F

where P is the approximation to P given by Equation 14.

It can also be shown that, under the above stated conditions,

the variance, Vs, of the cost for successful recalls is approximated by

the formula:

V R 2  d H

Case 2: Recall Model Dominated by Cost and Cycle Limits

At the opposite extreme from Case 1, are situations in which d

is sufficiently large that an additional micro-attempt at recall is always

allowed after the failure of one micro-attempt. This condition can be

stated more formally as:

Pr (X - H Vt+ 11 R> d) 0 for i-1, 2, ... ,N (16)

281



II

Assuming that Equation 18 holds and that t is large in comparison

to N R, then

- (1 - H /) (19)

This is just the probability that recall will not fall on any of N independent

micro-attempts when the probability of failure for each micro-attempt is

assumed to be 1 - HvT

Similarly, it can be shown that:

as R [I .HF. +(l - H V-)N. (1 (N. 1) Hv() (20)

and

C fa N R. (21)

are adequate approximations for the time-costs for successful and unsuc-

cessful recall processes.

282



Experimental Compari sons

For the purpose of comparing model predictions with experimental
data, it is necessary to identify the procedural features of a memory

experiment in which either the Case 1 or Case 2 derivations would apply.

Case 1 would seem to apply to experiments for which the subject is

encouraged to admit failure whenever an initial recall attempt is not
at least almost successful (the condition described in Equations 10 through
12) and for which a substantial time is allowed for recall (the condition
that N - ).For Case 2, a relevant experiment would be one in which the
subject is encouraged to make repeated attempts at recall until he succeeds
or until a time limit that is small in comparison to the retention interval

elapsed. Also, to validate the models, experiments that employ numerical
information as the object of recall are most relevant. In addition, the
experiment must include some method for preventing the subject from rehears-
ing the test items during the retention interval.

Unfortunately, we have failed to find any short-term memory studies

that satisfy these constraints. The primary problem is finding experiments
dealing with recall of numerical information. The only study which we
located that included such experiments was one performed by Cohen (1971).
Unfortunately, Cohen did not report response latencies and her precedures
cannot be characterized by either of the two cases for which we have approxi-
mate performance predictions for the HOS model. (Her retention intervals
were between 5 and 20 seconds, while her subjects were allowed 10 seconds
to attempt to recall each item and they were encouraged not to stop trying

until the time limit elapsed.) We were able to determine, however, that
the frequencies of correct recall obtained in Cohen'! experiments were gen-
erally consistent with the basic recall function (P a HVt), upon which the

HOS memory model is based.

It is interesting to note that the response latencies for success-

ful recall processes for the HOS model depend on the retention interval in
both cases for which time-cost approximations were derived. Since that

28



dependence assumes a rather complicated mathematical form (Equations 15 and

20), we have determined some illustrative empirical relationships between

retention interval and time-cost for successful recall processes. Figure
A-li portrays these results. The simulation that produced these data modeled
the recall of consonant trigrams, with each trigram being treated as three
separate items. It seems somewhat surprising that response latency in the
figure is virtually constant over a large range of retention intervals. This
observation is consistent with the claim of Waugh (1969) that, for verbal
material, the mean latency of successful recall from short-term memory, is
independent of retention interval. Some further simulation results for the

-same consonant trigram memory model are presented in Figure A-12, together
with some experimental data. Note that an optimal fit to the results of
Peterson and Peterson (1959) and Murdock (1961) is achieved when the paramr-
eter RE?4E? is set to .07. Since these data inspired the basic function for
recall upon which the HOS memory model is based, it is reassuring to note
that the elaborated model continues to fit the same data. We imaging that
the disparate results of M4elton, Crowder, and Wulff (1963), also displayed
in Figure A-12, are a consequence of factors in their experiment which
allowed their subjects to commit the test items to long-term memory.
Accordingly, we are not particularly concerned with the failure of any of
our HOS simulations to mimic those results.

284



REMEM - .05
0 - CASE I * I SUREl -.50

STIMULUS HAS STRENGTH -. 5217
& - CASE? * SURE -. 70

STIMULUS HAS STRENGTH - .7176

1.0

.9 /

.8

.7

cJ.6

.4 -.4

.3 '

0

0 2 4 6 8 10 12 14 16 18 20 22 24 50
RETENTION INTERVAL (SECONDS)

X .- STIMULUS NOT RECALLED

Figure A-11. Simulated Response Latencies for Successful Recall as a
,4 Function of Retention Interval (Consonant Trigrams)

'I

285

10 t



I d
ftt

CCS

40.
L. c

'4. 0

Cd

To.

286U



APPENDIX B

A BRIEF HISTORICAL PERSPECTIVE OF HOS

(1967-1978)



APPENDIX B
A BRIEF HISTORICAL PERSPECTIVE OF HOS

(1967-1978)

Robert J. Wherry, Jr., PhD.

- It is a truism that necessity is often the mother of invention -

and this is certainly true with regard to HOS. It was conceived out of
feelings of frustration and disappointments with the impotency of human
engineering technology of the mid-Sixties. The concept of a Human Operator
Simulator (HOS) did not suddenly appear to me one day, but was, I believe,
the inevitable outcome of consciously searching for a better approach to
solving human engineering problems. The concept of modeling human behavior
had attracted me for a number of years, however, prior to those months in
1967 when HOS was ultimately conceived. I am certain that the prior work
with which I had been involved in the area of vigilance behavior, informa-
tion processing under stressful condition~s, and predictions of student
pilot success or failure were instrumental in directing the ultimate con-
ception of how humans processed information and did various tasks. Factor
analytic studies I had done in Pensacola, Florida on a rather wide variety
of pilot tasks had left on me an indelible appreciation (or belief, at any
rate) that, perhaps, only a few independent factors really accounted for
goodness of performance in what, at first, had appeared to be very diverse
tasks. Finally, the experience which I had gained since 1959 in programming
computers for complex applications in aviation psychology, medicine, and
biophysics had made a believer of me with regard to the potential power
of computer simulation for solving all sorts of problems.

287



Thus, HOS rnot only developed from a specific need, but it also

grew out of what I consider to be an unusual and fortuitous series of experi-
ences to which I had been exposed. To better appreciate the specific purposes
for which HOS was initially conceived and developed, I must take you back
to late 1966 when I was transferred from Pensacola, Florida to the Naval

Missile Center (NMC) at Point Mugu, California to head up the human engineer-
ing branch. Our mission there was to accomplish the tests and evaluations

of new Naval airborne weapons systemls.

To perform a test and evaluation one must, of course, first
decide what one desires to test. It became obvious that two different
approaches were possible. The first I shall refer to as "comparison with
specs and standards" and the second I shall call "performance evaluation."
The first approach dealt with testing whether various aircraft displays,
controls, labels, panels, etc., conformed to Human Engineering guides,
standards and specifications. It may be recalled that MIL STD 1472
and MIL SPEC 46855 were first issued in 1966. Because of this we had in our
possession, at that time, the latest documents containing data on what the
Navy (and the other services as well) deemed to be "acceptable" HE design
standards. On the other hand, because of the newness of those documents,
no system arriving for test and evaluation at NMC for several years there-
after would have required a contractor to meet those standards and specifica-
tions. Thus, those documents did offer a standard of comparison by which
at least some aspects of the crewstations could be evaluated even though
it might be difficult or impossible to force an air frame contractor
comply with those standards. A second drawback in using MIL STO 1472 was
that no guidance on the impact on operator or system performance was pro-
vided in cases where various aspects of crewstation design failed to meetI the new standards. I found that it was virtually impossible to get the

'4 Navy interested in correcting any single deficiency, because no single
deficiency was ever so bad as to be able to say that it alone made the air-
craft either unsafe or that it alone would be the cause of unsuccessful or
aborted mission performance. It was obvious to our human engineering team

288



that the amdative effect of a series of minor deficiencies couLd and would

have a major impact on s3jeteM safety and mission success. To be able to
convince others of this point of view, however, would require a fairly
detailed model of the impact of various display and control features on

human information absorption, processing, and transmission in a task sequenc-
ing framework to illustrate such cumulative effects! Unfortunately, such

models were not available at that time.

The second approach to the test and evaluation of the crewstation

dealt with attempting to determine (regardless of conformance or non-con-
formance to various MIL STDs) if the operators were able to adequately per-

form the various functions which had been allocated to them. In attempting
to determine precisely what was expected of a given operator, we had occa-

sion to examine a wide variety of task analyses and timelines which had been
prepared by a variety of different contractors. Without exception, these
rather costly items, when they had, in fact, been prepared, were extremely
disappointing in terms of adequately expressing what was actually expected

of a given operator. All too often task analysis blocks had been prepared

at a very macro level (e.g., 'Pilot acquires and locks on target") and times
assigned to such activities were,obviously, merely "educated guesses." It
was my personal experience that, at least by the time a weapon system was
delivered to NMC, no task analysis or timeline indicated that the operator
would be too busy to perform all the functions he had been assigned. The
task analyses which we reviewed in those days also failed to give the
reader a good appreciation of the often necessary simultaneity of various
different task demands facing a particular operator during crucial segments
of a mission. It became obvious that a more stringent set of rules were
needed in guiding whoever prepared task analyses so that (a) an appropriate
level of detail would be included, and (b) a given statement made by a task

analyst could be interpreted without ambiguity as to what the operator's
responsibilities were. (From this concept, the Human Operator Procedures
(HOPROC) language ultimately arose.) Further, it was felt that a successful
accomplishment of any task analysis really involved two distinct efforts,

289



the first of which was expressing what was expected of the operator (in

terms of what actions he must take) and the second was (given the displays,

controls, and layout of the crewstation) to determine if the operator could,

in fact, accomplish all those assigned tasks within the requisite time.

This implied that the tasks themselves ought to be able to be described

independently of the particular crewstation layout, and, if a sophiti=ted

hum= performczae mod wze -aiZabe, then the impact of different crew-

station designs could be reliably and objectively evaluated without relying

on "educated guesses" by contractor personnel who had a personal interest

in making their own aircraft appear to be good in the Navy's eyes.

In a very real sense, the first concept of HOS was never intended

to simulate all types of human performance, but it did set out to quantify

performance times of various types of anatomy movement Chead and eyes, hands

and arms, feet, etc.) and the effect of various features of displays and

controls (e.g., size, contrast, shape, etc.). Actually, my own feeling by

late 1967, was that we were a long way from being able to predict the times

various mediated mental processes might take, but that at least those

observable events, such as anatomy movements, absorption of information from

displays, and manipulation of controls, should be able to be accurately

predicted. In this respect, I was especially encouraged by the work of

Topmiller and Sharp C1965) which had indicated that arm-hand reach time was

very predictable. Also several informal studies (which I deeply regret, have

never been published) on eye movement and fixation times and on numeral and

dial reading times which were conducted by Alvah Bittner and myself at Pt. Mugu

that greatly supported the concept that any task could be broken down into

sequences of various "micro" processes and the sum of the micro process times

would, in fact, yield the total task times, Many people rejected such a

hypothesis and predicted that there would be tremendous interactions among

many if not all of the micro processes which would make the analytical
"additive" approach I was advocating doomed to failure, Such discussions

and arguments, I might add, were very philosophical, since neither I nor

my opponents had sufficient data to support our contentions in those days,

/

i 290



I suppose I stuck with the belief that each micro process was independent

primarily because, if it turned out not to be true, there would be little

hope for a 'scientific' approach to human engineering in the, then, fore-

seeable future.

In addition to the above-mentioned reasons for the development of

a HOS, there was yet another reason. In those days, we were conducting some

open-loop simulations of various missile and missile launch systems. In

one conducted by Chuck Hutchins, it was discovered that operators in the

laboratory simulation were getting very good scores on locking onto and

-launching a simulated missile at a simulated target. It was also discovered

that the operators were waiting until minimum range to launch their simulated

weapons. The simulated targets were capable of maneuvering, but the

maneuvers were "canned" and had nothing to do with the maneuvering our

pilots were doing. Further, the simulated targets never fired back, which

might well account for the willingness of our pilots to wait until minimum

range to release their missiles. Thus, the concept of a simulated human

operator to be used as an intelligent adversary was also one of the original
planned uses of a HOS (although, to date, HOS has never been used for this

purpose).

In formulating the philosophy of how one could simulate a human
operator's behavior, one major concern I had in 1967 was whether a human

being could be considered to be a discrete or continous information processor.

In those days, many people held to the concept that man was indeed a con-
tinuous processor. If this were true, it might be more appropriate to use

* an analog rather than a digital computer. However, by reanalyzing some data
* collected much earlier by John Senders, I came to the conclusion that even

in a continuous tracking task, the human appeared to be sampling the avail-

able displayed information only about 13 times per second. Thus, man
appeared, at least to me, not to be a continuous sampler, but a discrete

one who could relatively easily be simulated with a digital computer.

291



Another major philosophical point was whether man should be con-

sidered to be a single- or multi-channel processor. This is more than a

question of whether an operator can be responsible for carrying out more than

one task at a time, for this he might appear to do even if he were a single-

channel operator capable of very rapid interlacing among more than one task.

The single-channel vs. multi-channel question really revolves on the issue

of whether the operator can simZtaneousZy be thinking about two different

things. After much introspection (as well as considering the writings of

various experts on this question) I chose essentially to conceive of man

as being a single-channel processor who is capable of rapidly multiplexing

among several tasks.

This, in turn, led to the concept in HOS of permitting the

simulated operator to have many different procedures going on at the same

time. In HOS, we call these the "active" procedures, while those which are

not currently of concern to the operator are knowr as "inactive" ones.
However, while many tasks may be "active," HOS only works on one at a time.

One of the earliest studies I did Clong before HOS or the HOPROC

language existed) was a relatively simple computer simulation to determine

what would happen under various strategy algorithms for deciding which dis-

olays to pay attention to when the simulated operator was responsible for

monitoring several different ones at the same time. These early studies led

to the concepts of a MONITORING PROCEDURE for a display as well as the concepts
of a procedure's"CRITICALITY" and the idea that criticality could dynamic-

ally change as a function of the disparity between a display's "desired

position," its "allowable limits", and its "estimated position." These con-

cepts have been retained in HOS since its beginning stages back in early

1968. Such algorithms provide the basis for the "adaptiveness" of the

behavior exhibited by HOS.

29

A292



Another very early consideration (which has changed very little

over the years) was how to handle "short-term" memory of the simulated

operator. The concept of "HAB" strength (which is discussed elsewhere)

and the probability of successful recall of an item of information which

had been recently absorbed was a concept which I adapted from Hull's and

Thorndike's theories of learning. The concept of modeling short-term memory

was felt to be necessary to determine how often the human would feel a

necessity to update his current information about some parameter by actually

looking at a display.

- By 1968, the basic concepts of HOS which included micro-process

handlers, adaptiveness algorithms, short-term memory, with the operator as

a single-channel processor capable of rapid multiplexing among the "active"

procedures had been formulated in detail as well as the earliest version

of the HOPROC language by which the user would specify what it was that the

simulated operator was expected to do. These concepts were reported in the

proceedings of a two-day meeting jointly hosted by the Office of Naval

Research and North American Aviation in Columbus, Ohio in November, 1968.

It is surprising and somewhat rewarding to see how little the basic concepts

formulated 10 years ago have changed during its development. It is also

interesting to note that I and other participants at that meeting estimated

that it might take 10 years to develop HOS.

By 1969, I was able to get some Independent Research (6.1) funds

to pay for a programmer (Mr. Don Kennerly -- then a member of our HE branch)

to start programming both the earliest versions of HOS and HAL (the HOPROC

Assembler/Loader program which was to decipher the HOPROC statements for

input to the HOS program). These earliest programs did not include all the

specifications of HOS mentioned above and HAL was written in COBOL. More than

anything else, they proved, at least to my own satisfaction, that it would

be feasible to write a digital computer program for a full-blown HOS. It

was also in 1969 that Bittner and I did the experiments mentioned above which

also were very encouraging regarding the concept of the additivity of micro-

process times.

293

t*~~~



In August of 1970, I was transferred to the Naval Air Development

Center in Warminster, Pennsylvania and it was immediately obvious that a HOS

would be even more valuable during early system development than during

later test and evaluation phases of system design.

Paul Chatelier, who was at that time stationed at NAOC, was in

the throes of formulating CAFES which also dealt with computerized

approaches to improving human factors engineering technology. (Later fund-

ing for HOS was formally included in the CAFES program element number, but

for two years they stayed as separate development efforts.)

By December, 1970 , Analytics became interested in the HOS concept

and submitted a proposal to work on its further development. Prior to

that, I had discovered that although I had brought the HOS and HAL programs

(written by Kennerly) with me, NAOC did not have a version of COBOL which

could compile the HAL program as it then existed. It was decided that it

would be better to have all the future programs written in FORTRAN for sub-

sequent ease in transferring them about the country.

The first contract to Analytics for work on HOS was let in 1971 and

out of that effort what I might call HOS 11 and HAL II were developed. It

is interesting to note that none of the original Analytics team which started

with that project are any longer involved with the work Analytics has done

in the past six years on the HOS project.

As more work was accomplished on HOS, it became obvious that

various additional statements in the HOPROC lanugage would be desirable as

well as a greater flexibility in how one could express various statements.

For a while, these additions were added as patches to the program until it

became obvious that it was time to go back and Incorporate all these changes

as well as some additional new concepts into the HAL and HOS programs. Thus,
what has been available since late 1975 actually is what we might call HOS III

294



and HAL IllI. Since that time, we have almost exclusively been involved in

validity testing of HOS Ill and little or no additional development has

taken place.

This does not mean to imply that HOS is considered to be in its

final or ultimate stage of development, for there are many additional features

which should and could be added to HOS. However, HOS III does represent

what I consider to be a highly useful technique for the initial assessment

of how well a trained operator will be able to perform his tasks in a

specified crewstation under varying situational demands.

One concept which was definitely added to HOS in 1974 which was

a rather marked departure from original plans for HOS, was the concept of

simulating the system hardware and software as well as targets using the

HOPROC language and the HAL and HOS programs. Originally, HOS was only to

be the Human Operator Simulator and it was anticipated that it would be

interfaced to hardware simulators in some fashion. It was found, however,

that it would be extremely difficult to modify hardware simulators written

by others so that HOS could easily interface with them. After much soul

searching, it was decided to expand the HOPROC language, HAL and HOS, to

include the ability to simulate hardware as well as the human components.

These changes were also incorporated and indeed necessitated the rewriting

for HOS III and HAL III.

The concept of a HODAC (Human Operator Data Analyzer/Collator)

program to analyze the human operator data enminating from a HOS run was

included in the very early stages of HOS planning. The first HODAC, how-

ever, was not available until 1974. It has proven to be less useful than

I originally thought it might, but this may be due, in part, to the fact

4that we have to date been most interested in seeing if HOS behaves like

real operators in systems which have already actually been built (i.e., our

295



validating studies) rather than in system which are actually under development.
It may be that many of the routines available in HODAC will turn out to be
very useful in deciding potential changes to procedures and crewstatlon
design when we try HOS on a developing systm and we determine that unless
something Is changed, it will be impossible for the operator to successfully
do all his allocated functions.

While HAL III and HOS III both now contain the additional capa-
bility for simulating hardware and target systems, there is no automatic
ltigging of their behavior as there is with the simulated human behavior.
ini part, this is due to the fact that NOS does not contain a "general
purpose" hardware system model which is madea system specific by the hard-
ware procedures and hardware functions. Lacking an overall scheme for a
general hardware system means that hardware system are not automatically
reducible to a specified number of micro-processors which can then be auto-
matically logged out whenever they are used. This necessitates some amount
of cleverness on the part of the HOS user to either log out and/or accumulate
data of interest to overall system performance.

Earlier, I mentioned that 40S should not be considered to be fully
developed. Areas where HOS might be expanded include the addition of a
"fatigue" model, the capability to pick up and move objects from one place
to another, the capability to walk (or run) from one place to another, the
ability to talk to another operator, the capability to perform visual target
recognition in a complex visual field, etc. I am convinced that each of
the above concepts can be added to HOS and I have, at least, rudimentary
models or schemes for handling all of the above concepts as well as several

'1 others. With the rather successful validation studies which have been con-4 ducted on HOS 111, it is probably now time to start the development of HOS
UV and HOS V which would be versions to include one or more of the above
concepts.

296



* 7777

Finally, I would be remiss if I did not discuss the concept of

operator error as it is treated in HOS. More than any other single item,

the way operator error is treated in HOS has been criticized. With a

few exceptions (which are discussed elsewhere), NdOS does not make errors.
Some people claim that this is unrealistic, but I maintain that as long as

the human operator is given the requisite amount of time to do a task, then

he does not make errors. He may not finish all the tasks we would like

him to do, and he may not do them as well as we would like him to do them,

but as long as he works at a reasonable pace, he will not make an error.
The fact that he doesn't get all his tasks accomplished when he works at
a reasonable pace merely indicates that we allocated too many tasks to
him. Thus, if HOS indicates the simulated operator spends too little

time on a given task, we may either assign a higher criticality to that
task and rerun the simulation to see if this alleviates the problem, or
we may reduce the number of tasks which were originally allocated to the
operator to see if this solves the problem.

I am certain that real systems do exist in which operators make
mistakes. On the other hand, this is a clear indication that we have,
in those systems, asked the operator to do too many and/or too complicated

tasks and therefore those systems are not properly human engineered by
definition, since successful performance of the tasks are not within the

capabilities of the operator. What HOS does is essentially to "instruct"

the operator not to attempt to work at a pace at which errors and mistakes
will occur because we hold to the concept that err'ors are the reeuZt of
heiitg under -;ime stress and that error-free performance can be maintained
provided the operator does not attempt to do too many things in too short
of a time period. The human errors that are observed in existing systems
are the result of real operators attempting, unsuccessfully, to perform

4 at a higher level than their capabilities permit.

297



In closing this brief historical perspective, I should also
nention that working on the development of HOS has been both fun and
exciting. The associations I have formed with the many people who have parti-
cipated in this development program has been very rewarding professionally
over the years. Finally, working on HOS has also often been a humbling
proposition as we have discovered how little we actually know about how
humans behave.

298



REFERENCES

Analytics. 1975. rntrouction ad Overvuiew. The Human Operator Simulator.
Vol. 1. Technical Report 1117-I. Willow Grove, Pennsylvania.

1975. HOS Users' Guide. The Human Operator Simulator. Vol. 2.
Technical Report 1181-A. Willow Grove, Pennsylvania.

1976. iIAL .?rogramers Guide. The Human Operator Simulator. Vol. 3.
Technical Report 1181-C. Willow Grove, Pennsylvania.

1974. HOS Progrtumere Guide. The Human Operator Simulator. Vol. 4.
Technical Report 1117-B. Willow Grove, Pennsylvania.

1974. HODAC Programmers Guide. The Human Operator Simulator. Vol. 5.
Technical Report 1117-A. Willow Grove, Pennsylvania.

1975. HOS Simulation Descriptions. The Human Operator Simulator.
Vol. 6. Technical Report 1181-B. Willow Grove, Pennsylvania.

1976. LAMPS Air Tactical Officer Simulation. The Human Operator
Simulator. Vol. 7. Technical Report 1200. Willow Grove, Pennsylvania.

1977. Applications to Assessment of Operator Loading. The Human
Operator Simulator. Vol. 8. Technical Report 1233-A. Willow Grove,
Pennsylvania.

1978. P-3C SS-3 Operator Station Coat Effectiveness Evaluation. The
Human Operator Simulator. Vol. 10. Technical Report 1289. Willow Grove,
Pennsylvania.

Bradley, J.V., and Wallis, R.A. 1959. Spacing of pushbutton on-off controls.
Engineering and Indstrial Psychology,. 1:107-119.

Bradley, J.V., and Wallis, R.A. 1960. Spacing of toggle switch on-off con-
trols. Engineering ad IndustriaZ Psychology. 1:8-19.

Bush, R.R., and Mosteller, F. 1955. Stochastic models for lerning. New
York: John Wiley & Sons, Inc.

Chapanis, A., and Kinkade, R.G. Design of controls. In Van Cott, H.P., and

Kinkade, R.G. 1972. Hun engineering guide to equipment desin (revised
edition). U.S. Government Printing Office.

Cohen, V.V.R. 1971. Short-term memory for quantitative information from
three kinds of visual displays. Human Performance Center Technical Report
No. 28, University of Michigan, Ann Arbor, Michigan.

299



Crossm4n, E.R.F.W. 1960. The Information capacity of the human motor system
in pursuit tracking. Quarterty Zour'aZ of E--iimenta PoychZ/ 0g. 12:1-16.

Oansereau, D.F., and Gregg, L.W. 1966. An information processing analysis of
mental multiplication. PaychomvwC Science. 6:71-72.

Davies, 8.T., and Watts, J.W. 1969. Preliminary investigation of movement
time between brake and acceleration pedals in automobiles. Eawna F or.
11:257-272.

Dodge, R., and Cline, T.S. 1901. The angle velocity of eye movements.
?sycho:ogy Review. 8:145-157.

Orury, C.G. 1975. Application of Fitts' Law to foot-pedal design. 3zom
?actors. 17:368-373.

-Fi'tts, P.M. 1954. The information capacity of the human motor system in
controlling the amplitude of movement. rTournal of &zperimentaZ psychozogy.
47:381-391.

Fitts, P.M., and Peterson, J.R. 1964. Information capacity of discrete
motor responses. .TozaZa of perime, -' PsychoZogy. 67:103-112.

Goldbeck, R.A., and Charlet, J.D. 1974. Task parameters for predicting panel
layout design and operator performance. Philco-Ford Technical Report WLD-
TR5480. Philco-Ford Corporation, WOL Oivision, Palo Alto, California.

Karger, O.W., and 8ayha, F.H. 1966. Enginered work mcnagnment. New York:
Industrial Press, Inc.

Macpherson, D.H., and Siegel, A.I. 1967. Verification of a digital technique
for sonar operation simulation. APS Technical Report, Applied Psychological
Services, Science Center, Wayne, Pennsylvania.

Melton, A.W., Crowder, R.G., and Wolff, 0. Short-term memory for individual
items with varying numbers of elements. Cited in Melton, A.W. 1963.
Implications of short-term memory for a general theory of memory. rouwna
of 7ez.bal aring and VerbaZ Behavior. 2:1-21.

Murdock, B.S. 1961. The retention of individual items. srouraZ of Z-eri-
entaZ PsyrchoZog. 62:618-625.

* Naval Air Oevelopment Center. 1974. LAWPS VZ-ZZZ ((3-2) Short-z'eMie)
operator's iw=Z~a for pi~ot and airborne ati=Z officer. NADC B013-57.
Warmi nster, Pennsylvania.

Peterson, L.R., and Peterson, M.J. 1959. Short-term memory of individual
* verbal items. rournaZ of Expe.imentaL PsychoLog. 58:193-198.

Pollatsek, A.W. 1969. Rehearsal, interference, and spacing of practice in
short-tern memory. Human Performance Center Technical Report No. 16,
University of Michigan, Ann Arbor, Michigan.

300



Quick, J.H., Duncan, J.H., Jr., and Malcolm, J.A., Jr. 1962. Work-factor
time standards. New York: McGraw Hill Book Co.

Restle, F. 1970. Speed of adding and comparing numbers. Journal of Experi-
mental PsychoZogy. 83:274-278.

Seibel, R. Data entry devices and procedures. In Van Cott, H.P., and
Kinkade, R.G. 1972. Hwan Zngineering guide to equipment design (revised
edition). U.S. Government Printing Office.

Shannon, C., and Weaver, W. 1949. The mathematical theory of conmunication.
Urbana: University of Illinois Press.

Thomas, H.B.G. 1963. Comunication theory and the constellation hypothesis
of calculation. Quarterty Journal of Experimental PycholZogy. 15:173-191.

Topmiller, D.A., and Sharp, E.D. 1965. Effects of visual fixation and
uncertainty on control panel layout. Technical Report AMRL-TR-65-149,
Aerospace Medical Research Laboratories, Wright-Patterson Air Force Base,
Ohio.

Waugh, N.C. 1969. The effects of recency and repetition on recall latencies.
Acta Psychologica. 30:115-125.

Welford, A.T. 1960. The measurement of sensory-motor performance survey and
reappraisal of twelve years' progress. Ergonomics. 3:189-230.

34

301



|I


